单词 | Prime Number Theorem | ||||||||||||||||||||||||||||||||
释义 | Prime Number TheoremThe theorem giving an asymptotic form for the Prime Counting Function for number of Primes less thansome Integer . Legendre (1808) suggested that, for large ,
For small , it has been checked and always found that . However, Skewes proved that the first crossing of occurs before (the Skewes Number). The upper bound for the crossing hassubsequently been reduced to . Littlewood (1914) proved that the Inequality reverses infinitely often forsufficiently large (Ball and Coxeter 1987). Lehman (1966) proved that at least reversals occur for numberswith 1166 or 1167 Decimal Digits. Chebyshev (Rubinstein and Sarnak 1994) put limits on the Ratio
Hadamard and Vallée Poussin proved the prime number theorem by showing that the Riemann Zeta Function hasno zeros of the form (Smith 1994, p. 128). In particular, Vallée Poussin showed that
Riemann estimated the Prime Counting Function with
The prime number theorem is equivalent to
The Riemann Hypothesis is equivalent to the assertion that
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 62-64, 1987. Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994. Courant, R. and Robbins, H. ``The Prime Number Theorem.'' §1.2c in Supplement to Ch. 1 in What is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 27-30, 1996. Davenport, H. ``Prime Number Theorem.'' Ch. 18 in Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, pp. 111-114, 1980. de la Vallée Poussin, C.-J. ``Recherches analytiques la théorie des nombres premiers.'' Ann. Soc. scient. Bruxelles 20, 183-256, 1896. Hadamard, J. ``Sur la distribution des zéros de la fonction et ses conséquences arithmétiques (').'' Bull. Soc. math. France 24, 199-220, 1896. Hardy, G. H. and Wright, E. M. ``Statement of the Prime Number Theorem.'' §1.8 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 9-10, 1979. Ingham, A. E. The Distribution of Prime Numbers. London: Cambridge University Press, p. 83, 1932. Legendre, A. M. Essai sur la Théorie des Nombres. Paris: Duprat, 1808. Lehman, R. S. ``On the Difference .'' Acta Arith. 11, 397-410, 1966. Littlewood, J. E. ``Sur les distribution des nombres premiers.'' C. R. Acad. Sci. Paris 158, 1869-1872, 1914. Nagell, T. ``The Prime Number Theorem.'' Ch. 8 in Introduction to Number Theory. New York: Wiley, 1951. Riemann, G. F. B. ``Über die Anzahl der Primzahlen unter einer gegebenen Grösse.'' Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 671, 1859. Rubinstein, M. and Sarnak, P. ``Chebyshev's Bias.'' Experimental Math. 3, 173-197, 1994. Selberg, A. and Erdös, P. ``An Elementary Proof of the Prime Number Theorem.'' Ann. Math. 50, 305-313, 1949. Shanks, D. ``The Prime Number Theorem.'' §1.6 in Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 15-17, 1993. Smith, D. E. A Source Book in Mathematics. New York: Dover, 1994. Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 25-35, 1991. |
||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。