释义 |
Prolate Spheroidal Wave FunctionThe Wave Equation in Prolate Spheroidal Coordinates is  | |  | (1) | where
 | (2) |
Substitute in a trial solution
 | (3) |
 | (4) |
The radial differential equation is
 | (5) |
and the angular differential equation is
 | (6) |
Note that these are identical (except for a sign change). The prolate angular function of the first kind is given by
 | (7) |
where is an associated Legendre Polynomial. The prolate angular function of the second kind is given by
 | (8) |
where is an associated Legendre Function of the Second Kind and the Coefficients satisfy the Recurrence Relation
 | (9) |
with
Various normalization schemes are used for the s (Abramowitz and Stegun 1972, p. 758). Meixner and Schäfke (1954) use
 | (13) |
Stratton et al. (1956) use
 | (14) |
Flammer (1957) uses
 | (15) |
See also Oblate Spheroidal Wave Function References
Abramowitz, M. and Stegun, C. A. (Eds.). ``Spheroidal Wave Functions.'' Ch. 21 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 751-759, 1972.Flammer, C. Spheroidal Wave Functions. Stanford, CA: Stanford University Press, 1957. Meixner, J. and Schäfke, F. W. Mathieusche Funktionen und Sphäroidfunktionen. Berlin: Springer-Verlag, 1954. Stratton, J. A.; Morse, P. M.; Chu, L. J.; Little, J. D. C.; and Corbató, F. J. Spheroidal Wave Functions. New York: Wiley, 1956.
|