请输入您要查询的字词:

 

单词 Pólya Conjecture
释义

Pólya Conjecture

Let be a Positive Integer and the number of (not necessarily distinct) Prime Factors of (with ). Let be the number of Positive Integers with an Odd number ofPrime factors, and the number of Positive Integers with an Even number ofPrime factors. Pólya conjectured that


is , where is the Liouville Function.


The conjecture was made in 1919, and disproven by Haselgrove (1958) using a method due to Ingham (1942). Lehman(1960) found the first explicit counterexample, , and the smallest counterexample wasfound by Tanaka (1980). The first for which are , 4, 6, 10, 16, 26, 40, 96, 586, 906150256, ... (Tanaka 1980, Sloane's A028488). It is unknown if changes sign infinitely often (Tanaka 1980).

See also Andrica's Conjecture, Liouville Function, Prime Factors


References

Haselgrove, C. B. ``A Disproof of a Conjecture of Pólya.'' Mathematika 5, 141-145, 1958.

Ingham, A. E. ``On Two Conjectures in the Theory of Numbers.'' Amer. J. Math. 64, 313-319, 1942.

Lehman, R. S. ``On Liouville's Function.'' Math. Comput. 14, 311-320, 1960.

Sloane, N. J. A. Sequence A028488in ``The On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html.

Tanaka, M. ``A Numerical Investigation on Cumulative Sum of the Liouville Function'' [sic]. Tokyo J. Math. 3, 187-189, 1980.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/8 22:28:19