单词 | Alexander Polynomial | ||||||||||||||||||||||||||||||||||
释义 | Alexander PolynomialA Polynomial invariant of a Knot discovered in 1923 by J. W. Alexander (Alexander 1928). In technicallanguage, the Alexander polynomial arises from the Homology of the infinitely cyclic coverof a Knot's complement. Any generator of a Principal Alexander Ideal is called anAlexander polynomial (Rolfsen 1976). Because the Alexander Invariant of a Tame Knot in Let
![]() ![]()
![]() ![]()
![]() The Alexander polynomial remained the only known Knot Polynomial until the Jones Polynomial wasdiscovered in 1984. Unlike the Alexander polynomial, the more powerful Jones Polynomial does, in most cases,distinguish Handedness. A normalized form of the Alexander polynomial symmetric in
![]() ![]()
for the Trefoil Knot, Figure-of-Eight Knot, and Solomon's Seal Knot, respectively. Multiplyingthrough to clear the Negative Powers gives the usual Alexander polynomial, where the finalSign is determined by convention. ![]() Let an Alexander polynomial be denoted
For a Knot,
![]()
![]()
![]() The HOMFLY Polynomial
Rolfsen (1976) gives a tabulation of Alexander polynomials for Knots up to 10Crossings and Links up to 9 Crossings. See also Braid Group, Jones Polynomial, Knot, Knot Determinant,Link, Skein RelationshipReferences Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 165-169, 1994. Alexander, J. W. ``Topological Invariants of Knots and Links.'' Trans. Amer. Math. Soc. 30, 275-306, 1928. Alexander, J. W. ``A Lemma on a System of Knotted Curves." Proc. Nat. Acad. Sci. USA 9, 93-95, 1923. Doll, H. and Hoste, J. ``A Tabulation of Oriented Links.'' Math. Comput. 57, 747-761, 1991. Jones, V. ``A Polynomial Invariant for Knots via von Neumann Algebras.'' Bull. Amer. Math. Soc. 12, 103-111, 1985. Rolfsen, D. ``Table of Knots and Links.'' Appendix C in Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 280-287, 1976. Stoimenow, A. ``Alexander Polynomials.'' http://www.informatik.hu-berlin.de/~stoimeno/ptab/a10.html. Stoimenow, A. ``Conway Polynomials.'' http://www.informatik.hu-berlin.de/~stoimeno/ptab/c10.html. |
||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。