单词 | Riemann Hypothesis | ||||||
释义 | Riemann HypothesisFirst published in Riemann (1859), the Riemann hypothesis states that thenontrivial Roots of the Riemann Zeta Function
![]() ![]() ![]() ![]() In 1914, Hardy The Riemann hypothesis is equivalent to
![]() ![]() The hypothesis was computationally tested and found to be true for the first There is also a finite analog of the Riemann hypothesis concerning the location of zeros for function fields defined byequations such as
![]() ![]()
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 75, 1987. Brent, R. P. ``On the Zeros of the Riemann Zeta Function in the Critical Strip.'' Math. Comput. 33, 1361-1372, 1979. Brent, R. P.; van de Lune, J.; te Riele, H. J. J.; and Winter, D. T. ``On the Zeros of the Riemann Zeta Function in the Critical Strip. II.'' Math. Comput. 39, 681-688, 1982. Abstract available at ftp://nimbus.anu.edu.au/pub/Brent/rpb070a.dvi.Z. Csordas, G.; Smith, W.; and Varga, R. S. ``Lehmer Pairs of Zeros, the de Bruijn-Newman Constant and the Riemann Hypothesis.'' Constr. Approx. 10, 107-129, 1994. Eichler, M. Introduction to the Theory of Algebraic Numbers and Functions. New York: Academic Press, 1966. Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 25, 1983. Odlyzko, A. ``The Riemann, B. ``Über die Anzahl der Primzahlen unter einer gegebenen Grösse,'' Mon. Not. Berlin Akad., pp. 671-680, Nov. 1859. Sloane, N. J. A. SequenceA002410/M4924in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. van de Lune, J. and te Riele, H. J. J. ``On The Zeros of the Riemann Zeta-Function in the Critical Strip. III.'' Math. Comput. 41, 759-767, 1983. van de Lune, J.; te Riele, H. J. J.; and Winter, D. T. ``On the Zeros of the Riemann Zeta Function in the Critical Strip. IV.'' Math. Comput. 46, 667-681, 1986. Wagon, S. Mathematica in Action. New York: W. H. Freeman, p. 33, 1991. Weil, A. Sur les courbes algébriques et les variétès qui s'en déduisent. Paris, 1948. |
||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。