| 单词 | Riemann Hypothesis | ||||||
| 释义 | Riemann HypothesisFirst published in Riemann (1859), the Riemann hypothesis states that thenontrivial Roots of the Riemann Zeta Function
In 1914, Hardy The Riemann hypothesis is equivalent to
The hypothesis was computationally tested and found to be true for the first There is also a finite analog of the Riemann hypothesis concerning the location of zeros for function fields defined byequations such as
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 75, 1987. Brent, R. P. ``On the Zeros of the Riemann Zeta Function in the Critical Strip.'' Math. Comput. 33, 1361-1372, 1979. Brent, R. P.; van de Lune, J.; te Riele, H. J. J.; and Winter, D. T. ``On the Zeros of the Riemann Zeta Function in the Critical Strip. II.'' Math. Comput. 39, 681-688, 1982. Abstract available at ftp://nimbus.anu.edu.au/pub/Brent/rpb070a.dvi.Z. Csordas, G.; Smith, W.; and Varga, R. S. ``Lehmer Pairs of Zeros, the de Bruijn-Newman Constant and the Riemann Hypothesis.'' Constr. Approx. 10, 107-129, 1994. Eichler, M. Introduction to the Theory of Algebraic Numbers and Functions. New York: Academic Press, 1966. Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 25, 1983. Odlyzko, A. ``The Riemann, B. ``Über die Anzahl der Primzahlen unter einer gegebenen Grösse,'' Mon. Not. Berlin Akad., pp. 671-680, Nov. 1859. Sloane, N. J. A. SequenceA002410/M4924in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. van de Lune, J. and te Riele, H. J. J. ``On The Zeros of the Riemann Zeta-Function in the Critical Strip. III.'' Math. Comput. 41, 759-767, 1983. van de Lune, J.; te Riele, H. J. J.; and Winter, D. T. ``On the Zeros of the Riemann Zeta Function in the Critical Strip. IV.'' Math. Comput. 46, 667-681, 1986. Wagon, S. Mathematica in Action. New York: W. H. Freeman, p. 33, 1991. Weil, A. Sur les courbes algébriques et les variétès qui s'en déduisent. Paris, 1948. |
||||||
| 随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。