请输入您要查询的字词:

 

单词 Apodization Function
释义

Apodization Function

A function (also called a Tapering Function) used to bring an interferogram smoothly down to zero at the edges of thesampled region. This suppresses sidelobes which would otherwise be produced, but at the expense of widening the lines andtherefore decreasing the resolution.


The following are apodization functions for symmetrical (2-sided) interferograms, together with the InstrumentFunctions (or Apparatus Functions) they produce and a blowup of theInstrument Function sidelobes. The Instrument Function corresponding to a given apodization function can be computed by taking the finite Fourier Cosine Transform,

(1)

TypeApodization FunctionInstrument Function
Bartlett
Blackman
Connes
Cosine
Gaussian
Hamming
Hanning
Uniform1
Welch

where


(2)
(3)
   (4)
(5)
(6)
(7)
 (8)
(9)
 (10)
(11)
 (12)

TypeInstrument Function FWHMIF Peak
Bartlett1.7717910.00000000
Blackman2.298800.840.00124325
Connes1.90416
Cosine1.63941
Gaussian--1----
Hamming1.815221.080.00734934
Hanning2.0000010.00843441
Uniform1.206712
Welch1.59044


A general symmetric apodization function can be written as a Fourier Series

(13)

where the Coefficients satisfy
(14)

The corresponding apparatus function is
(15)
To obtain an Apodization Function with zero at , use
(16)

Plugging in (14),


(17)


(18)


(19)
(20)

The Hamming Function is close to the requirement that the Apparatus Function goes to 0 at , giving
(21)
(22)

The Blackman Function is chosen so that the Apparatus Function goes to 0 at and 9/4, giving
(23)
(24)
(25)

See also Bartlett Function, Blackman Function, Connes Function, Cosine Apodization Function,Full Width at Half Maximum,Gaussian Function, Hamming Function, Hann Function, Hanning Function, Mertz ApodizationFunction, Parzen Apodization Function, Uniform Apodization Function, Welch Apodization Function


References

Ball, J. A. ``The Spectral Resolution in a Correlator System'' §4.3.5 in Methods of Experimental Physics 12C (Ed. M. L. Meeks). New York: Academic Press, pp. 55-57, 1976.

Blackman, R. B. and Tukey, J. W. ``Particular Pairs of Windows.'' In The Measurement of Power Spectra, From the Point of View of Communications Engineering. New York: Dover, pp. 95-101, 1959.

Brault, J. W. ``Fourier Transform Spectrometry.'' In High Resolution in Astronomy: 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics (Ed. A. Benz, M. Huber, and M. Mayor). Geneva Observatory, Sauverny, Switzerland, pp. 31-32, 1985.

Harris, F. J. ``On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.'' Proc. IEEE 66, 51-83, 1978.

Norton, R. H. and Beer, R. ``New Apodizing Functions for Fourier Spectroscopy.'' J. Opt. Soc. Amer. 66, 259-264, 1976.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 547-548, 1992.

Schnopper, H. W. and Thompson, R. I. ``Fourier Spectrometers.'' In Methods of Experimental Physics 12A (Ed. M. L. Meeks). New York: Academic Press, pp. 491-529, 1974.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 7:39:28