单词 | Archimedean Solid | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Archimedean SolidThe Archimedean solids are convex Polyhedra which have a similar arrangement of nonintersectingregular plane Convex Polygons of two or more different types about each Vertex with all sides the same length. The Archimedean solids are distinguished from thePrisms, Antiprisms, and Elongated Square Gyrobicupola by their symmetry group:the Archimedean solids have a spherical symmetry, while the others have ``dihedral'' symmetry. The Archimedean solids aresometimes also referred to as the Semiregular Polyhedra. Pugh (1976, p. 25) points out the Archimedean solids are all capable of being circumscribed by a regular Tetrahedron sothat four of their faces lie on the faces of that Tetrahedron. A method of constructing the Archimedean solids using amethod known as ``expansion'' has been enumerated by Stott (Stott 1910; Ball and Coxeter 1987, pp. 139-140). Let the cyclic sequence
Condition (1) simply says that the figure consists of two or more polygons, each having at least three sides. Condition (2)requires that the sum of interior angles at a vertex must be equal to a full rotation for the figure to lie in the plane,and less than a full rotation for a solid figure to be convex. The usual way of enumerating the semiregular polyhedra is to eliminate solutions of conditions (1) and (2) using severalclasses of arguments and then prove that the solutions left are, in fact, semiregular (Kepler 1864, pp. 116-126; Catalan1865, pp. 25-32; Coxeter 1940, p. 394; Coxeter et al. 1954; Lines 1965, pp. 202-203; Walsh 1972). The following table gives all possible regular and semiregular polyhedra and tessellations. In the table, `P' denotes Platonic Solid,`M' denotes a Prism or Antiprism, `A' denotes an Archimedean solid, and `T' a plane tessellation.
As shown in the above table, there are exactly 13 Archimedean solids (Walsh 1972, Ball and Coxeter 1987). They are calledthe Cuboctahedron, Great Rhombicosidodecahedron,Great Rhombicuboctahedron, Icosidodecahedron, SmallRhombicosidodecahedron, Small Rhombicuboctahedron, Snub Cube, Snub Dodecahedron, TruncatedCube, Truncated Dodecahedron, Truncated Icosahedron (soccer ball), Truncated Octahedron, andTruncated Tetrahedron. The Archimedean solids satisfy ![]() where ![]() ![]() Here are the Archimedean solids shown in alphabetical order (left to right, then continuing to the next row).
The following table lists the symbol and number of faces of each type for the Archimedean solids (Wenninger 1989, p. 9).
Let
The Duals of the Archimedean solids, sometimes called the Catalan Solids, are given in the following table.
Here are the Archimedean Duals (Holden 1971, Pearce 1978) displayed in alphabetical order (left toright, then continuing to the next row). Here are the Archimedean solids paired with their Duals. ![]() ![]() The Archimedean solids and their Duals are all Canonical Polyhedra. See also Archimedean Solid Stellation, Catalan Solid, Deltahedron, Johnson Solid, Kepler-PoinsotSolid, Platonic Solid, Semiregular Polyhedron, Uniform Polyhedron
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 136, 1987. Behnke, H.; Bachman, F.; Fladt, K.; and Kunle, H. (Eds.). Fundamentals of Mathematics, Vol. 2. Cambridge, MA: MIT Press, pp. 269-286, 1974. Catalan, E. ``Mémoire sur la Théorie des Polyèdres.'' J. l'École Polytechnique (Paris) 41, 1-71, 1865. Coxeter, H. S. M. ``The Pure Archimedean Polytopes in Six and Seven Dimensions.'' Proc. Cambridge Phil. Soc. 24, 1-9, 1928. Coxeter, H. S. M. ``Regular and Semi-Regular Polytopes I.'' Math. Z. 46, 380-407, 1940. Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973. Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. ``Uniform Polyhedra.'' Phil. Trans. Roy. Soc. London Ser. A 246, 401-450, 1954. Critchlow, K. Order in Space: A Design Source Book. New York: Viking Press, 1970. Cromwell, P. R. Polyhedra. New York: Cambridge University Press, pp. 79-86, 1997. Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., 1989. Holden, A. Shapes, Space, and Symmetry. New York: Dover, p. 54, 1991. Kepler, J. ``Harmonice Mundi.'' Opera Omnia, Vol. 5. Frankfurt, pp. 75-334, 1864. Kraitchik, M. Mathematical Recreations. New York: W. W. Norton, pp. 199-207, 1942. Pearce, P. Structure in Nature is a Strategy for Design. Cambridge, MA: MIT Press, pp. 34-35, 1978. Pugh, A. Polyhedra: A Visual Approach. Berkeley: University of California Press, p. 25, 1976. Rawles, B. A. ``Platonic and Archimedean Solids--Faces, Edges, Areas, Vertices, Angles, Volumes, Sphere Ratios.'' http://www.intent.com/sg/polyhedra.html. Rorres, C. ``Archimedean Solids: Pappus.'' http://www.mcs.drexel.edu/~crorres/Archimedes/Solids/Pappus.html. Steinitz, E. and Rademacher, H. Vorlesungen über die Theorie der Polyheder. Berlin, p. 11, 1934. Stott, A. B. Verhandelingen der Koninklijke Akad. Wetenschappen, Amsterdam 11, 1910. Walsh, T. R. S. ``Characterizing the Vertex Neighbourhoods of Semi-Regular Polyhedra.'' Geometriae Dedicata 1, 117-123, 1972. Wenninger, M. J. Polyhedron Models. New York: Cambridge University Press, 1989. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。