请输入您要查询的字词:

 

单词 Bieberbach Conjecture
释义

Bieberbach Conjecture

The th Coefficient in the Power series of a Univalent Function should be no greater than . Inother words, if


is a conformal transformation of a unit disk on any domain, then . In more technical terms, ``geometricextremality implies metric extremality.'' The conjecture had been proven for the first six terms (the cases , 3, and4 were done by Bieberbach, Lowner, and Shiffer and Garbedjian, respectively), was known to be false for only a finitenumber of indices (Hayman 1954), and true for a convex or symmetric domain (Le Lionnais 1983). The general case wasproved by Louis de Branges (1985). De Branges proved the Milin Conjecture, which established the RobertsonConjecture, which in turn established the Bieberbach conjecture (Stewart 1996).


References

de Branges, L. ``A Proof of the Bieberbach Conjecture.'' Acta Math. 154, 137-152, 1985.

Hayman, W. K. Multivalent Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1994.

Hayman, W. K. and Stewart, F. M. ``Real Inequalities with Applications to Function Theory.'' Proc. Cambridge Phil. Soc. 50, 250-260, 1954.

Kazarinoff, N. D. ``Special Functions and the Bieberbach Conjecture.'' Amer. Math. Monthly 95, 689-696, 1988.

Korevaar, J. ``Ludwig Bieberbach's Conjecture and its Proof.'' Amer. Math. Monthly 93, 505-513, 1986.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 53, 1983.

Pederson, R. N. ``A Proof of the Bieberbach Conjecture for the Sixth Coefficient.'' Arch. Rational Mech. Anal. 31, 331-351, 1968/1969.

Pederson, R. and Schiffer, M. ``A Proof of the Bieberbach Conjecture for the Fifth Coefficient.'' Arch. Rational Mech. Anal. 45, 161-193, 1972.

Stewart, I. ``The Bieberbach Conjecture.'' In From Here to Infinity: A Guide to Today's Mathematics. Oxford, England: Oxford University Press, pp. 164-166, 1996.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:49:25