单词 | Birthday Problem | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Birthday ProblemConsider the probability
But this can be written in terms of Factorials as
![]() ![]()
![]() ![]() ![]() ![]()
The number ![]() ![]() ![]() The probability
where the latter has error
![]() In general, let
![]()
where
![]()
![]() In general,
![]() ![]() A good approximation to the number of people
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
![]() The ``almost'' birthday problem, which asks the number of people needed such that two have a birthday within a day of each other,was considered by Abramson and Moser (1970), who showed that 14 people suffice. An approximation for the minimum number ofpeople needed to get a 50-50 chance that two have a match within
Abramson, M. and Moser, W. O. J. ``More Birthday Surprises.'' Amer. Math. Monthly 77, 856-858, 1970. Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 45-46, 1987. Bloom, D. M. ``A Birthday Problem.'' Amer. Math. Monthly 80, 1141-1142, 1973. Bogomolny, A. ``Coincidence.'' http://www.cut-the-knot.com/do_you_know/coincidence.html. Clevenson, M. L. and Watkins, W. ``Majorization and the Birthday Inequality.'' Math. Mag. 64, 183-188, 1991. Diaconis, P. and Mosteller, F. ``Methods of Studying Coincidences.'' J. Amer. Statist. Assoc. 84, 853-861, 1989. Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley, pp. 31-32, 1968. Finch, S. ``Puzzle #28 [June 1997]: Coincident Birthdays.'' http://www.mathsoft.com/mathcad/library/puzzle/soln28/soln28.html. Gehan, E. A. ``Note on the `Birthday Problem.''' Amer. Stat. 22, 28, Apr. 1968. Heuer, G. A. ``Estimation in a Certain Probability Problem.'' Amer. Math. Monthly 66, 704-706, 1959. Hocking, R. L. and Schwertman, N. C. ``An Extension of the Birthday Problem to Exactly Hunter, J. A. H. and Madachy, J. S. Mathematical Diversions. New York: Dover, pp. 102-103, 1975. Klamkin, M. S. and Newman, D. J. ``Extensions of the Birthday Surprise.'' J. Combin. Th. 3, 279-282, 1967. Levin, B. ``A Representation for Multinomial Cumulative Distribution Functions.'' Ann. Statistics 9, 1123-1126, 1981. McKinney, E. H. ``Generalized Birthday Problem.'' Amer. Math. Monthly 73, 385-387, 1966. Mises, R. von. ``Über Aufteilungs--und Besetzungs-Wahrscheinlichkeiten.'' Revue de la Faculté des Sciences de l'Université d'Istanbul, N. S. 4, 145-163, 1939. Reprinted in Selected Papers of Richard von Mises, Vol. 2 (Ed. P. Frank, S. Goldstein, M. Kac, W. Prager, G. Szegö, and G. Birkhoff). Providence, RI: Amer. Math. Soc., pp. 313-334, 1964. Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 179-180, 1994. Sayrafiezadeh, M. ``The Birthday Problem Revisited.'' Math. Mag. 67, 220-223, 1994. Sevast'yanov, B. A. ``Poisson Limit Law for a Scheme of Sums of Dependent Random Variables.'' Th. Prob. Appl. 17, 695-699, 1972. Sloane, N. J. A.A014088 andA033810 in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html. Stewart, I. ``What a Coincidence!'' Sci. Amer. 278, 95-96, June 1998. Tesler, L. ``Not a Coincidence!'' http://www.nomodes.com/coincidence.html. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。