单词 | Blancmange Function |
释义 | Blancmange Function![]() A Continuous Function which is nowhere Differentiable. The iterations towards the continuous function areBatrachions resembling the Hofstadter-Conway $10,000 Sequence. The first six iterations areillustrated below. The ![]() and looping over ![]() ![]() ![]() ![]() ![]() ![]() Peitgen and Saupe (1988) refer to this curve as the Takagi Fractal Curve. See also Hofstadter-Conway $10,000 Sequence, Weierstraß Function
Dixon, R. Mathographics. New York: Dover, pp. 175-176 and 210, 1991. Peitgen, H.-O. and Saupe, D. (Eds.). ``Midpoint Displacement and Systematic Fractals: The Takagi Fractal Curve, Its Kin, and the Related Systems.'' §A.1.2 in The Science of Fractal Images. New York: Springer-Verlag, pp. 246-248, 1988. Takagi, T. ``A Simple Example of the Continuous Function without Derivative.'' Proc. Phys. Math. Japan 1, 176-177, 1903. Tall, D. O. ``The Blancmange Function, Continuous Everywhere but Differentiable Nowhere.'' Math. Gaz. 66, 11-22, 1982. Tall, D. ``The Gradient of a Graph.'' Math. Teaching 111, 48-52, 1985. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。