单词 | Smarandache-Wagstaff Function |
释义 | Smarandache-Wagstaff FunctionGiven the sum-of-Factorials function is the smallest integer for Prime such that is divisible by . The first fewknown values are 2, 4, 5, 12, 19, 24, 32, 19, 20, 20, 20, 7, 57, 6, ... for , 11, 17, 23, 29, 37, 41, 43, 53, 67, 73,79, 97, .... The values for 5, 7, 13, 31, ..., if they are finite, must be very large.See also Factorial, Smarandache Function
Ashbacher, C. ``Some Properties of the Smarandache-Kurepa and Smarandache-Wagstaff Functions.'' Math. Informatics Quart. 7, 114-116, 1997. ``Functions in Number Theory.'' http://www.gallup.unm.edu/~smarandache/FUNCT1.TXT. Mudge, M. ``Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions.'' Smarandache Notions J. 7, 52-53, 1996. Mudge, M. ``Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions.'' Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。