单词 | Sphere Packing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Sphere PackingLet In 3-D, there are three periodic packings for identical spheres: cubic lattice, face-centered cubic lattice, and hexagonallattice. It was hypothesized by Kepler In 3-D, face-centered cubic close packing and hexagonal close packing (which is distinct from hexagonal lattice), both give
``Random'' close packing in 3-D gives only The Packing Densities for several packing types are summarized in the following table.
![]() For cubic close packing, pack six Spheres together in the shape of an Equilateral Triangle and placeanother Sphere on top to create a Triangular Pyramid. Now create another such grouping of sevenSpheres and place the two Pyramids together facing in opposite directions. A Cubeemerges. Consider a face of the Cube, illustrated below. ![]() The ``unit cell'' cube contains eight
The diagonal of the face is ![]() ![]()
Hexagonal close packing must give the same values, since sliding one sheet of Spheres cannot affect thevolume they occupy. To verify this, construct a 3-D diagram containing a hexagonal unit cell with three layers. Both the topand the bottom contain six
![]()
![]()
If we had actually wanted to compute the Volume of Sphere inside and outside the HexagonalPrism, we could use the Spherical Cap equation to obtain
The rigid packing with lowest density known has If spheres packed in a cubic lattice, face-centered cubic lattice, and hexagonal lattice are allowed to expand, they formcubes, hexagonal prisms, and rhombic dodecahedra. Compressing a random packing gives polyhedra with an average of 13.3faces (Coxeter 1958, 1961). For sphere packing inside a Cube, see Goldberg (1971) and Schaer (1966). See also Cannonball Problem, Circle Packing, Dodecahedral Conjecture, Hemisphere, HermiteConstants, Hypersphere, Hypersphere Packing, Kepler Conjecture, Kepler Problem, KissingNumber, Local Density, Local Density Conjecture, SphereReferences Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, 1993. Coxeter, H. S. M. ``Close-Packing and so Forth.'' Illinois J. Math. 2, 746-758, 1958. Coxeter, H. S. M. ``Close Packing of Equal Spheres.'' Section 22.4 in Introduction to Geometry, 2nd ed. New York: Wiley, pp. 405-411, 1961. Coxeter, H. S. M. ``The Problem of Packing a Number of Equal Nonoverlapping Circles on a Sphere.'' Trans. New York Acad. Sci. 24, 320-331, 1962. Critchlow, K. Order in Space: A Design Source Book. New York: Viking Press, 1970. Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 195-197, 1989. Eppstein, D. ``Covering and Packing.''http://www.ics.uci.edu/~eppstein/junkyard/cover.html. Fejes Tóth, G. ``Über einen geometrischen Satz.'' Math. Z. 46, 78-83, 1940. Fejes Tóth, G. Lagerungen in der Ebene, auf der Kugel und in Raum, 2nd ed. Berlin: Springer-Verlag, 1972. Gardner, M. ``Packing Spheres.'' Ch. 7 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, 1966. Gauss, C. F. ``Besprechung des Buchs von L. A. Seeber: Intersuchungen über die Eigenschaften der positiven ternären quadratischen Formen usw.'' Göttingsche Gelehrte Anzeigen (1831, July 9) 2, 188-196, 1876. Goldberg, M. ``On the Densest Packing of Equal Spheres in a Cube.'' Math. Mag. 44, 199-208, 1971. Hales, T. C. ``The Sphere Packing Problem.'' J. Comput. Appl. Math 44, 41-76, 1992. Jaeger, H. M. and Nagel, S. R. ``Physics of Granular States.'' Science 255, 1524, 1992. Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 31, 1983. Lindsey, J. H. II. ``Sphere Packing in Muder, D. J. ``Putting the Best Face of a Voronoi Polyhedron.'' Proc. London Math. Soc. 56, 329-348, 1988. Rogers, C. A. ``The Packing of Equal Spheres.'' Proc. London Math. Soc. 8, 609-620, 1958. Rogers, C. A. Packing and Covering. Cambridge, England: Cambridge University Press, 1964. Schaer, J. ``On the Densest Packing of Spheres in a Cube.'' Can. Math. Bul. 9, 265-270, 1966. Sloane, N. J. A. ``The Packing of Spheres.'' Sci. Amer. 250, 116-125, 1984. Stewart, I. The Problems of Mathematics, 2nd ed. Oxford, England: Oxford University Press, pp. 69-82, 1987. Thompson, T. M. From Error-Correcting Codes Through Sphere Packings to Simple Groups. Washington, DC: Math. Assoc. Amer., 1984. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。