单词 | Carmichael's Conjecture |
释义 | Carmichael's ConjectureCarmichael's conjecture asserts that there are an Infinite number of Carmichael Numbers. This was proven by Alford et al. (1994). See also Carmichael Number, Carmichael's Totient Function Conjecture
Alford, W. R.; Granville, A.; and Pomerance, C. ``There Are Infinitely Many Carmichael Numbers.'' Ann. Math. 139, 703-722, 1994. Cipra, B. What's Happening in the Mathematical Sciences, Vol. 1. Providence, RI: Amer. Math. Soc., 1993. Guy, R. K. ``Carmichael's Conjecture.'' §B39 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 94, 1994. Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. ``The Pseudoprimes to Ribenboim, P. The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, pp. 29-31, 1989. Schlafly, A. and Wagon, S. ``Carmichael's Conjecture on the Euler Function is Valid Below |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。