单词 | Chaos |
释义 | ChaosA Dynamical System is chaotic if it
An example of a simple physical system which displays chaotic behavior is the motion of a magneticpendulum
Bai-Lin, H. Chaos. Singapore: World Scientific, 1984. Baker, G. L. and Gollub, J. B. Chaotic Dynamics: An Introduction, 2nd ed. Cambridge: Cambridge University Press, 1996. Cvitanovic, P. Universality in Chaos: A Reprint Selection, 2nd ed. Bristol: Adam Hilger, 1989. Dickau, R. M. ``Magnetic Pendulum.''http://forum.swarthmore.edu/advanced/robertd/magneticpendulum.html. Drazin, P. G. Nonlinear Systems. Cambridge, England: Cambridge University Press, 1992. Field, M. and Golubitsky, M. Symmetry in Chaos: A Search for Pattern in Mathematics, Art and Nature. Oxford, England: Oxford University Press, 1992. Gleick, J. Chaos: Making a New Science. New York: Penguin, 1988. Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed. New York: Springer-Verlag, 1997. Lichtenberg, A. and Lieberman, M. Regular and Stochastic Motion, 2nd ed. New York: Springer-Verlag, 1994. Lorenz, E. N. The Essence of Chaos. Seattle, WA: University of Washington Press, 1996. Ott, E. Chaos in Dynamical Systems. New York: Cambridge University Press, 1993. Ott, E.; Sauer, T.; and Yorke, J. A. Coping with Chaos: Analysis of Chaotic Data and the Exploitation of Chaotic Systems. New York: Wiley, 1994. Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag, 1992. Poon, L. ``Chaos at Maryland.'' http://www-chaos.umd.edu. Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, 1990. Strogatz, S. H. Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Addison-Wesley, 1994. Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, 1989. Tufillaro, N.; Abbott, T. R.; and Reilly, J. An Experimental Approach to Nonlinear Dynamics and Chaos. Redwood City, CA: Addison-Wesley, 1992. Wiggins, S. Global Bifurcations and Chaos: Analytical Methods. New York: Springer-Verlag, 1988. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer-Verlag, 1990. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。