请输入您要查询的字词:

 

单词 Chebyshev Quadrature
释义

Chebyshev Quadrature

A Gaussian Quadrature-like Formula for numerical estimation of integrals. It uses Weighting Function in the interval and forces all the weights to be equal. The general Formula is


The Abscissas are found by taking terms up to in the Maclaurin Series of



and then defining


The Roots of then give the Abscissas. The first few values are




Because the Roots are all Real for and only (Hildebrand 1956), these are the only permissible orders forChebyshev quadrature. The error term is


where


The first few values of are 2/3, 8/45, 1/15, 32/945, 13/756, and 16/1575 (Hildebrand 1956). Beyer (1987) givesabscissas up to and Hildebrand (1956) up to .

2± 0.57735
30
 ± 0.707107
4± 0.187592
 ± 0.794654
50
 ± 0.374541
 ± 0.832497
6± 0.266635
 ± 0.422519
 ± 0.866247
70
 ± 0.323912
 ± 0.529657
 ± 0.883862
90
 ± 0.167906
 ± 0.528762
 ± 0.601019
 ± 0.911589

The Abscissas and weights can be computed analytically for small .

2
30
 
4
 
50
 
 

See also Chebyshev Quadrature, Lobatto Quadrature


References

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 466, 1987.

Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 345-351, 1956.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 7:34:25