请输入您要查询的字词:

 

单词 Oblate Spheroid Geodesic
释义

Oblate Spheroid Geodesic

The Geodesic on an Oblate Spheroid can be computed analytically for a spheroid specified parametricallyby

(1)
(2)
(3)

with , although it is much more unwieldy than for a simple Sphere. Using the first Partial Derivatives
(4)


(5)


(6)

and second Partial Derivatives
(7)


(8)


(9)

gives the Geodesics functions as
 
  
 (10)
(11)
 
 (12)

Since and and are explicit functions of only, we can use the special form of the Geodesicequation.
 
  
 (13)

Integrating gives
(14)

where
(15)
(16)

is an Elliptic Integral of the First Kind with Parameter , and isan Elliptic Integral of the Third Kind.


Geodesics other than Meridians of an Oblate Spheroid undulate between twoparallels with latitudes equidistant from the equator. Using the Weierstraß Sigma Function and Weierstraß Zeta Function, the Geodesic on the OblateSpheroid can be written as

(17)
(18)
(19)

(Forsyth 1960, pp. 108-109; Halphen 1886-1891).


The equation of the Geodesic can be put in the form

(20)

where is the smallest value of on the curve. Furthermore, the difference in longitude between points ofhighest and next lowest latitude on the curve is
(21)

where the Modulus of the Elliptic Function is
(22)

(Forsyth 1960, p. 446).

See also Ellipsoid Geodesic, Oblate Spheroid, Sphere Geodesic


References

Forsyth, A. R. Calculus of Variations. New York: Dover, 1960.

Halphen, G. H. Traité des fonctions elliptiques et de leurs applications fonctions elliptiques, Vol. 2. Paris: Gauthier-Villars, pp. 238-243, 1886-1891.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 2:06:35