单词 | Taxicab Number | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Taxicab NumberThe
which is associated with the following story told about Ramanujan ![]() ![]() However, this property was also known as early as 1657 by F. de Bessy (Berndt and Bhargava 1993, Guy 1994).Leech (1957) found
Rosenstiel et al. (1991) recently found
D. Wilson found
The first few taxicab numbers are therefore 2, 1729, 87539319, 6963472309248, ... (Sloane's A011541). Hardy and Wright (Theorem 412, 1979) show that the number of such sums can be made arbitrarily large but, updating Guy(1994) with Wilson's result, the least example is not known for six or more equal sums. Sloane defines a slightly different type of taxicab numbers, namely numbers which are sums of two cubes in two or more ways,the first few of which are 1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, ... (Sloane's A001235). See also Diophantine Equation--Cubic, Hardy-Ramanujan Number
Berndt, B. C. and Bhargava, S. ``Ramanujan--For Lowbrows.'' Am. Math. Monthly 100, 645-656, 1993. Guy, R. K. ``Sums of Like Powers. Euler's Conjecture.'' §D1 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144, 1994. Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 68, 1959. Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979. Hofstadter, D. R. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books, p. 564, 1989. Kanigel, R. The Man Who Knew Infinity: A Life of the Genius Ramanujan. New York: Washington Square Press, p. 312, 1991. Leech, J. ``Some Solutions of Diophantine Equations.'' Proc. Cambridge Phil. Soc. 53, 778-780, 1957. Plouffe, S. ``Taxicab Numbers.'' http://www.lacim.uqam.ca/pi/problem.html. Rosenstiel, E.; Dardis, J. A.; and Rosenstiel, C. R. ``The Four Least Solutions in Distinct Positive Integers of the Diophantine Equation Silverman, J. H. ``Taxicabs and Sums of Two Cubes.'' Amer. Math. Monthly 100, 331-340, 1993. Sloane, N. J. A.A001235 andA011541 in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html. Snow, C. P. Foreword to A Mathematician's Apology, reprinted with a foreword by C. P. Snow (by G. H. Hardy). New York: Cambridge University Press, p. 37, 1993. Wooley, T. D. ``Sums of Two Cubes.'' Internat. Math. Res. Not., 181-184, 1995. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。