单词 | Tetrahedral Number | ||||||
释义 | Tetrahedral NumberA Figurate Number of the form
The only numbers which are simultaneously Square and Tetrahedral are, , and (giving , , and ), as proved by Meyl(1878; cited in Dickson 1952, p. 25). Numbers which are simultaneously Triangular andtetrahedral satisfy the Binomial Coefficient equation
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987. Beukers, F. ``On Oranges and Integral Points on Certain Plane Cubic Curves.'' Nieuw Arch. Wisk. 6, 203-210, 1988. Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 44-46, 1996. Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1952. Guy, R. K. ``Figurate Numbers.'' §D3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 147-150, 1994. Meyl, A.-J.-J. ``Solution de Question 1194.'' Nouv. Ann. Math. 17, 464-467, 1878. Sloane, N. J. A. SequenceA000292/M3382in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。