请输入您要查询的字词:

 

单词 Totient Valence Function
释义

Totient Valence Function

is the number of Integers for which , also called the Multiplicity of (Guy 1994). The table below lists values for .

multiplicity
121, 2
233, 4, 6
445, 8, 10, 12
647, 9, 14, 18
8515, 16, 20, 24, 30
10211, 22
12613, 21, 26, 28, 36, 42
16617, 32, 34, 40, 48, 60
18419, 27, 38, 54
20525, 33, 44, 50, 66
22223, 46
241035, 39, 45, 52, 56, 70, 72, 78, 84, 90
28229, 58
30231, 62
32751, 64, 68, 80, 96, 102, 120
36837, 57, 63, 74, 76, 108, 114, 126
40941, 55, 75, 82, 88, 100, 110, 132, 150
42443, 49, 86, 98
44369, 92, 138
46247, 94
481165, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210

A table listing the first value of with multiplicities up to 100 follows (Sloane's A014573).

032625605149927621840
21273845217640779072
32282885320167838640
44291320541152799360
583036965560008081216
612312405612288814032
73232768574752825280
836339000582688834800
94034432593024844608
102435712860136808516896
1148364200619984863456
1216037480621728873840
13396385766319208810800
142268391296642400899504
157044012006575609018000
1631241159366623049123520
177242331267228489239936
18336433072688400935040
1921644324069291609426208
20936458647053769527360
21144463120713360966480
22624477344721440979216
2310564838887313248982880
2417604972074110409926496
25360501680752772010034272


It is thought that (i.e., the totient valence function never takes on the value 1), but this has not beenproven. This assertion is called Carmichael's Totient Function Conjecture and is equivalent to the statement thatfor all , there exists such that (Ribenboim 1996, pp. 39-40). Any counterexample must havemore than 10,000,000 Digits (Schlafly and Wagon 1994, Conway and Guy 1996).

See also Carmichael's Totient Function Conjecture, Totient Function


References

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 155, 1996.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 94, 1994.

Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.

Schlafly, A. and Wagon, S. ``Carmichael's Conjecture on the Euler Function is Valid Below .'' Math. Comput. 63, 415-419, 1994.

Sloane, N. J. A. Sequence A014573in ``The On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/5 13:18:42