单词 | Ultraspherical Polynomial | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Ultraspherical PolynomialThe ultraspherical polynomials are solutions to the Ultraspherical Differential Equation forInteger and . They are generalizations of Legendre Polynomials to-D space and are proportional to (or, depending on the normalization, equal to) the GegenbauerPolynomials , denoted in Mathematica (Wolfram Research, Champaign,IL) GegenbauerC[n,lambda,x]. The ultraspherical polynomials are also Jacobi Polynomials with. They are given by the Generating Function
In terms of the Hypergeometric Functions,
They are normalized by
Derivative identities include
A Recurrence Relation is
Special double- Formulas also exist
Special values are given in the following table.
Koschmieder (1920) gives representations in terms of Elliptic Functions for and . See also Birthday Problem, Chebyshev Polynomial of the Second Kind, Elliptic Function, HypergeometricFunction, Jacobi Polynomial
Abramowitz, M. and Stegun, C. A. (Eds.). ``Orthogonal Polynomials.'' Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972. Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, p. 643, 1985. Iyanaga, S. and Kawada, Y. (Eds.). ``Gegenbauer Polynomials (Gegenbauer Functions).'' Appendix A, Table 20.I in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1477-1478, 1980. Koschmieder, L. ``Über besondere Jacobische Polynome.'' Math. Zeitschrift 8, 123-137, 1920. Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 547-549 and 600-604, 1953. Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。