请输入您要查询的字词:

 

单词 Diophantus Property
释义

Diophantus Property

A set of Positive Integers satisfies the Diophantus property of order if, for all, ..., with ,

(1)

where and are Integers. The set is called a Diophantine -tuple. Fermat found thefirst quadruple: . General quadruples are
(2)

where are Fibonacci Numbers, and
(3)

The quadruplet


(4)

is (Dujella 1996). Dujella (1993) showed there exist no Diophantine quadruples .


References

Aleksandriiskii, D. Arifmetika i kniga o mnogougol'nyh chislakh. Moscow: Nauka, 1974.

Brown, E. ``Sets in Which is Always a Square.'' Math. Comput. 45, 613-620, 1985.

Davenport, H. and Baker, A. ``The Equations and .'' Quart. J. Math. (Oxford) Ser. 2 20, 129-137, 1969.

Dujella, A. ``Generalization of a Problem of Diophantus.'' Acta Arithm. 65, 15-27, 1993.

Dujella, A. ``Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers.'' Portugaliae Math. 52, 305-318, 1995.

Dujella, A. ``Generalized Fibonacci Numbers and the Problem of Diophantus.'' Fib. Quart. 34, 164-175, 1996.

Hoggatt, V. E. Jr. and Bergum, G. E. ``A Problem of Fermat and the Fibonacci Sequence.'' Fib. Quart. 15, 323-330, 1977.

Jones, B. W. ``A Variation of a Problem of Davenport and Diophantus.'' Quart. J. Math. (Oxford) Ser. (2) 27, 349-353, 1976.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 3:44:13