单词 | Disk Covering Problem | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Disk Covering ProblemN.B. A detailed on-line essay by S. Finchwas the starting point for this entry. Given a Unit Disk, find the smallest Radius required for equal disks to completely cover theUnit Disk. For a symmetrical arrangement with (the Five Disks Problem),, where is the Golden Ratio. However, the radius can be reduced in thegeneral disk covering problem where symmetry is not required. The first few such values are Here, values for , 8, 9, 10 were obtained using computer experimentation by Zahn (1962).The value is equal to , where and are solutions to
(Bezdek 1983, 1984). Letting be the smallest number of Disks of Radius needed to cover adisk , the limit of the ratio of the Area of to the Area of the disks is given by
Ball, W. W. R. and Coxeter, H. S. M. ``The Five-Disc Problem.'' In Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 97-99, 1987. Bezdek, K. ``Über einige Kreisüberdeckungen.'' Beiträge Algebra Geom. 14, 7-13, 1983. Bezdek, K. ``Über einige optimale Konfigurationen von Kreisen.'' Ann. Univ. Sci. Budapest Eötvös Sect. Math. 27, 141-151, 1984. Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/circle/circle.html Kershner, R. ``The Number of Circles Covering a Set.'' Amer. J. Math. 61, 665-671, 1939. Neville, E. H. ``On the Solution of Numerical Functional Equations, Illustrated by an Account of a Popular Puzzle and of its Solution.'' Proc. London Math. Soc. 14, 308-326, 1915. Verblunsky, S. ``On the Least Number of Unit Circles which Can Cover a Square.'' J. London Math. Soc. 24, 164-170, 1949. Zahn, C. T. ``Black Box Maximization of Circular Coverage.'' J. Res. Nat. Bur. Stand. B 66, 181-216, 1962. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。