请输入您要查询的字词:

 

单词 Ehrhart Polynomial
释义

Ehrhart Polynomial

Let denote an integral convex Polytope of Dimension in a lattice , and let denote the number of Lattice Points in dilated by a factor of the integer ,

(1)

for . Then is a polynomial function in of degree with rational coefficients
(2)

called the Ehrhart polynomial (Ehrhart 1967, Pommersheim 1993). Specific coefficients have important geometricinterpretations.
1. is the Content of .

2. is half the sum of the Contents of the -D faces of .

3. .
Let denote the sum of the lattice lengths of the edges of , then the case corresponds toPick's Theorem,
(3)

Let denote the sum of the lattice volumes of the 2-D faces of , then the case gives
(4)

where a rather complicated expression is given by Pommersheim (1993), since can unfortunately not beinterpreted in terms of the edges of . The Ehrhart polynomial of the tetrahedron with vertices at(0, 0, 0), (, 0, 0), (0, , 0), (0, 0, ) is

(5)
where is a Dedekind Sum, , , (here, gcd is the Greatest Common Divisor), and (Pommersheim 1993).

See also Dehn Invariant, Pick's Theorem


References

Ehrhart, E. ``Sur une problème de géométrie diophantine linéaire.'' J. Reine angew. Math. 227, 1-29, 1967.

MacDonald, I. G. ``The Volume of a Lattice Polyhedron.'' Proc. Camb. Phil. Soc. 59, 719-726, 1963.

McMullen, P. ``Valuations and Euler-Type Relations on Certain Classes of Convex Polytopes.'' Proc. London Math. Soc. 35, 113-135, 1977.

Pommersheim, J. ``Toric Varieties, Lattices Points, and Dedekind Sums.'' Math. Ann. 295, 1-24, 1993.

Reeve, J. E. ``On the Volume of Lattice Polyhedra.'' Proc. London Math. Soc. 7, 378-395, 1957.

Reeve, J. E. ``A Further Note on the Volume of Lattice Polyhedra.'' Proc. London Math. Soc. 34, 57-62, 1959.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 3:37:56