请输入您要查询的字词:

 

单词 Zermelo-Fraenkel Axioms
释义

Zermelo-Fraenkel Axioms

The Zermelo-Fraenkel axioms are the basis for Zermelo-Fraenkel Set Theory. In the following, stands forExists, for ``is an element of,'' for For All, for Implies, forNot (Negation), for And, for Or, for ``isEquivalent to,'' and denotes the union of all the sets that are the elements of .

1. Existence of the empty set: .

2. Extensionality axiom: .

3. Unordered pair axiom: .

4. Union (or ``sum-set'') axiom: .

5. Subset axiom: .

6. Replacement axiom: For any set-theoretic formula ,



7. Regularity axiom: For any set-theoretic formula , .

8. Axiom of Choice:

9. Infinity axiom: .

If Axiom 6 is replaced by
6'. Axiom of subsets: for any set-theoretic formula , ,
which can be deduced from Axiom 6, then the set theory is called Zermelo Set Theory instead ofZermelo-Fraenkel Set Theory.


Abian (1969) proved Consistency and independence of four of the Zermelo-Fraenkel axioms.

See also Zermelo-Fraenkel Set Theory


References

Abian, A. ``On the Independence of Set Theoretical Axioms.'' Amer. Math. Monthly 76, 787-790, 1969.

Iyanaga, S. and Kawada, Y. (Eds.). ``Zermelo-Fraenkel Set Theory.'' §35B in Encyclopedic Dictionary of Mathematics, Vol. 1. Cambridge, MA: MIT Press, pp. 134-135, 1980.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:31:45