单词 | Ferguson-Forcade Algorithm | ||||||||||||||||||
释义 | Ferguson-Forcade AlgorithmA practical algorithm for determining if there exist integers ![]() or else establish bounds within which no such Integer Relation can exist (Ferguson and Forcade 1979). Anonrecursive variant of the original algorithm was subsequently devised by Ferguson (1987). The Ferguson-Forcadealgorithm has shown that there are no algebraic equations of degree ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
Bailey, D. H. ``Numerical Results on the Transcendence of Constants Involving Ferguson, H. R. P. ``A Short Proof of the Existence of Vector Euclidean Algorithms.'' Proc. Amer. Math. Soc. 97, 8-10, 1986. Ferguson, H. R. P. ``A Non-Inductive GL( Ferguson, H. R. P. and Forcade, R. W. ``Generalization of the Euclidean Algorithm for Real Numbers to All Dimensions Higher than Two.'' Bull. Amer. Math. Soc. 1, 912-914, 1979. |
||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。