单词 | Abundant Number | ||||||||||||
释义 | Abundant NumberAn abundant number is an Integer
![]() ![]() There are only 21 abundant numbers less than 100, and they are all Even. The first Odd abundant number is
Define the density function
![]() ![]() ![]()
A number which is abundant but for which all its Proper Divisors are Deficient is called a Primitive Abundant Number (Guy 1994, p. 46). See also Aliquot Sequence, Deficient Number, Highly Abundant Number, Multiamicable Numbers,Perfect Number, Practical Number, Primitive Abundant Number,Weird Number
Deléglise, M. ``Encadrement de la densité des nombres abondants.'' Submitted. Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, pp. 3-33, 1952. Erdös, P. ``On the Density of the Abundant Numbers.'' J. London Math. Soc. 9, 278-282, 1934. Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/abund/abund.html Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-46, 1994. Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, pp. 11 and 13, 1997. Sloane, N. J. A. SequenceA005101/M4825in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Wall, C. R. ``Density Bounds for the Sum of Divisors Function.'' In The Theory of Arithmetic Functions (Ed. A. A. Gioia and D. L. Goldsmith). New York: Springer-Verlag, pp. 283-287, 1971. Wall, C. R.; Crews, P. L.; and Johnson, D. B. ``Density Bounds for the Sum of Divisors Function.'' Math. Comput. 26, 773-777, 1972. Wall, C. R.; Crews, P. L.; and Johnson, D. B. ``Density Bounds for the Sum of Divisors Function.'' Math. Comput. 31, 616, 1977. |
||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。