| 单词 | Abundant Number | ||||||||||||
| 释义 | Abundant NumberAn abundant number is an Integer
There are only 21 abundant numbers less than 100, and they are all Even. The first Odd abundant number is
Define the density function
A number which is abundant but for which all its Proper Divisors are Deficient is called a Primitive Abundant Number (Guy 1994, p. 46). See also Aliquot Sequence, Deficient Number, Highly Abundant Number, Multiamicable Numbers,Perfect Number, Practical Number, Primitive Abundant Number,Weird Number
Deléglise, M. ``Encadrement de la densité des nombres abondants.'' Submitted. Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, pp. 3-33, 1952. Erdös, P. ``On the Density of the Abundant Numbers.'' J. London Math. Soc. 9, 278-282, 1934. Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/abund/abund.html Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-46, 1994. Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, pp. 11 and 13, 1997. Sloane, N. J. A. SequenceA005101/M4825in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Wall, C. R. ``Density Bounds for the Sum of Divisors Function.'' In The Theory of Arithmetic Functions (Ed. A. A. Gioia and D. L. Goldsmith). New York: Springer-Verlag, pp. 283-287, 1971. Wall, C. R.; Crews, P. L.; and Johnson, D. B. ``Density Bounds for the Sum of Divisors Function.'' Math. Comput. 26, 773-777, 1972. Wall, C. R.; Crews, P. L.; and Johnson, D. B. ``Density Bounds for the Sum of Divisors Function.'' Math. Comput. 31, 616, 1977. |
||||||||||||
| 随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。