单词 | Gauss's Class Number Conjecture |
释义 | Gauss's Class Number ConjectureIn his monumental treatise Disquisitiones Arithmeticae, Gauß ![]() as ![]() ![]() ![]() ![]() Goldfeld (1976) showed that if there exists a ``Weil curve'' whose associated Dirichlet L-Series has a zero of at least third order at ![]() Gross and Zaiger (1983) showed that certain curves must satisfy the condition of Goldfeld, and Goldfeld's proof wassimplified by Oesterlé (1985).See also Class Number, Gauss's Class Number Problem, Heegner Number
Arno, S.; Robinson, M. L.; and Wheeler, F. S. ``Imaginary Quadratic Fields with Small Odd Class Number.'' http://www.math.uiuc.edu/Algebraic-Number-Theory/0009/. Böcherer, S. ``Das Gauß'sche Klassenzahlproblem.'' Mitt. Math. Ges. Hamburg 11, 565-589, 1988. Gauss, C. F. Disquisitiones Arithmeticae. New Haven, CT: Yale University Press, 1966. Goldfeld, D. M. ``The Class Number of Quadratic Fields and the Conjectures of Birch and Swinnerton-Dyer.'' Ann. Scuola Norm. Sup. Pisa 3, 623-663, 1976. Gross, B. and Zaiger, D. ``Points de Heegner et derivées de fonctions Heilbronn, H. ``On the Class Number in Imaginary Quadratic Fields.'' Quart. J. Math. Oxford Ser. 25, 150-160, 1934. Oesterlé, J. ``Nombres de classes des corps quadratiques imaginaires.'' Astérique 121-122, 309-323, 1985. Siegel, C. L. ``Über die Klassenzahl quadratischer Zahlkörper.'' Acta. Arith. 1, 83-86, 1936. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。