请输入您要查询的字词:

 

单词 Generalized Hyperbolic Functions
释义

Generalized Hyperbolic Functions

In 1757, V. Riccati first recorded the generalizations of the Hyperbolic Functions defined by

(1)

for , ..., , where is Complex, with the value at defined by
(2)

This is called the -hyperbolic function of order of the th kind. The functions satisfy
(3)

where
(4)

In addition,
(5)

The functions give a generalized Euler Formula
(6)

Since there are th roots of , this gives a system of linear equations. Solving for gives
(7)

where
(8)

is a Primitive Root of Unity.


The Laplace Transform is

(9)

The generalized hyperbolic function is also related to the Mittag-Leffler Function by
(10)

The values and give the exponential and circular/hyperbolic functions (depending on the sign of ),respectively.

(11)
(12)
(13)

For , the first few functions are
 
 
 
 
 
 
 
 
 
 

See also Hyperbolic Functions, Mittag-Leffler Function


References

Kaufman, H. ``A Biographical Note on the Higher Sine Functions.'' Scripta Math. 28, 29-36, 1967.

Muldoon, M. E. and Ungar, A. A. ``Beyond Sin and Cos.'' Math. Mag. 69, 3-14, 1996.

Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A. K. Peters, 1996.

Ungar, A. ``Generalized Hyperbolic Functions.'' Amer. Math. Monthly 89, 688-691, 1982.

Ungar, A. ``Higher Order Alpha-Hyperbolic Functions.'' Indian J. Pure. Appl. Math. 15, 301-304, 1984.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/5 9:57:10