请输入您要查询的字词:

 

单词 Perrin Pseudoprime
释义

Perrin Pseudoprime

If is Prime, then , where is a member of the Perrin Sequence 0, 2, 3, 2, 5, 5, 7, 10, 12, 17,... (Sloane's A001608). A Perrin pseudoprime is a Composite Number such that . Several``unrestricted'' Perrin pseudoprimes are known, the smallest of which are 271441, 904631, 16532714, 24658561, ...(Sloane's A013998).


Adams and Shanks (1982) discovered the smallest unrestricted Perrin pseudoprime after unsuccessful searches by Perrin (1899),Malo (1900), Escot (1901), and Jarden (1966). (Stewart's 1996 article stating no Perrin pseudoprimes were known was in error.)


Grantham (1996) generalized the definition of Perrin pseudoprime with parameters to be an Odd CompositeNumber for which either

1. and has an S-Signature, or

2. and has a Q-Signature,
where is the Jacobi Symbol. All the 55 Perrin pseudoprimes less than have been computed by Kurtz et al. (1986). All have S-Signature, and form the sequence Sloane calls ``restricted'' Perrin pseudoprimes:27664033, 46672291, 102690901, ... (Sloane's A018187).

See also Perrin Sequence, Pseudoprime


References

Adams, W. W. ``Characterizing Pseudoprimes for Third-Order Linear Recurrence Sequences.'' Math Comput. 48, 1-15, 1987.

Adams, W. and Shanks, D. ``Strong Primality Tests that Are Not Sufficient.'' Math. Comput. 39, 255-300, 1982.

Bach, E. and Shallit, J. Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, p. 305, 1996.

Escot, E.-B. ``Solution to Item 1484.'' L'Intermédiare des Math. 8, 63-64, 1901.

Grantham, J. ``Frobenius Pseudoprimes.'' http://www.clark.net/pub/grantham/pseudo/pseudo1.ps

Holzbaur, C. ``Perrin Pseudoprimes.'' http://ftp.ai.univie.ac.at/perrin.html.

Jarden, D. Recurring Sequences. Jerusalem: Riveon Lematematika, 1966.

Kurtz, G. C.; Shanks, D.; and Williams, H. C. ``Fast Primality Tests for Numbers Less than .'' Math. Comput. 46, 691-701, 1986.

Perrin, R. ``Item 1484.'' L'Intermédiare des Math. 6, 76-77, 1899.

Ribenboim, P. The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, p. 135, 1996.

Sloane, N. J. A.A013998,A018187, andA001608/M0429in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html.

Stewart, I. ``Tales of a Neglected Number.'' Sci. Amer. 274, 102-103, June 1996.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 2:23:42