单词 | Perrin Pseudoprime |
释义 | Perrin PseudoprimeIf Adams and Shanks (1982) discovered the smallest unrestricted Perrin pseudoprime after unsuccessful searches by Perrin (1899),Malo (1900), Escot (1901), and Jarden (1966). (Stewart's 1996 article stating no Perrin pseudoprimes were known was in error.) Grantham (1996) generalized the definition of Perrin pseudoprime with parameters
![]() ![]()
Adams, W. W. ``Characterizing Pseudoprimes for Third-Order Linear Recurrence Sequences.'' Math Comput. 48, 1-15, 1987. Adams, W. and Shanks, D. ``Strong Primality Tests that Are Not Sufficient.'' Math. Comput. 39, 255-300, 1982. Bach, E. and Shallit, J. Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, p. 305, 1996. Escot, E.-B. ``Solution to Item 1484.'' L'Intermédiare des Math. 8, 63-64, 1901. Grantham, J. ``Frobenius Pseudoprimes.'' http://www.clark.net/pub/grantham/pseudo/pseudo1.ps Holzbaur, C. ``Perrin Pseudoprimes.'' http://ftp.ai.univie.ac.at/perrin.html. Jarden, D. Recurring Sequences. Jerusalem: Riveon Lematematika, 1966. Kurtz, G. C.; Shanks, D.; and Williams, H. C. ``Fast Primality Tests for Numbers Less than Perrin, R. ``Item 1484.'' L'Intermédiare des Math. 6, 76-77, 1899. Ribenboim, P. The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, p. 135, 1996. Sloane, N. J. A.A013998,A018187, andA001608/M0429in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html. Stewart, I. ``Tales of a Neglected Number.'' Sci. Amer. 274, 102-103, June 1996. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。