单词 | Latin Square | ||||||||||||
释义 | Latin SquareAn Two of the Latin squares of order 3 are ![]() which are orthogonal. Two of the 576 Latin squares of order 4 are ![]() A normalized, or reduced, Latin square is a Latin square with the first row and column given by ![]() The numbers of normalized Latin square of order ![]() ![]() ![]() ![]() ![]()
Colbourn, C. J. and Dinitz, J. H. CRC Handbook of Combinatorial Designs. Boca Raton, FL: CRC Press, 1996. Gessel, I. ``Counting Latin Rectangles.'' Bull. Amer. Math. Soc. 16, 79-83, 1987. Hunter, J. A. H. and Madachy, J. S. Mathematical Diversions. New York: Dover, pp. 33-34, 1975. Kraitchik, M. ``Latin Squares.'' §7.11 in Mathematical Recreations. New York: W. W. Norton, p. 178, 1942. Lindner, C. C. and Rodger, C. A. Design Theory. Boca Raton, FL: CRC Press, 1997. McKay, B. D. and Rogoyski, E. ``Latin Squares of Order 10.'' Electronic J. Combinatorics 2, N3 1-4, 1995.http://www.combinatorics.org/Volume_2/volume2.html#N3. Nechvatal, J. R. ``Asymptotic Enumeration of Generalised Latin Rectangles.'' Util. Math. 20, 273-292, 1981. Ryser, H. J. ``Latin Rectangles.'' §3.3 in Combinatorial Mathematics. Buffalo, NY: Math. Assoc. Amer., pp. 35-37, 1963. Shao, J.-Y. and Wei, W.-D. ``A Formula for the Number of Latin Squares.'' Disc. Math. 110, 293-296, 1992. Sloane, N. J. A. SequencesA002860/M2051and A000315/M3690in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。