| 单词 | Latin Square | ||||||||||||
| 释义 | Latin SquareAn Two of the Latin squares of order 3 are ![]() which are orthogonal. Two of the 576 Latin squares of order 4 are ![]() A normalized, or reduced, Latin square is a Latin square with the first row and column given by The numbers of normalized Latin square of order
Colbourn, C. J. and Dinitz, J. H. CRC Handbook of Combinatorial Designs. Boca Raton, FL: CRC Press, 1996. Gessel, I. ``Counting Latin Rectangles.'' Bull. Amer. Math. Soc. 16, 79-83, 1987. Hunter, J. A. H. and Madachy, J. S. Mathematical Diversions. New York: Dover, pp. 33-34, 1975. Kraitchik, M. ``Latin Squares.'' §7.11 in Mathematical Recreations. New York: W. W. Norton, p. 178, 1942. Lindner, C. C. and Rodger, C. A. Design Theory. Boca Raton, FL: CRC Press, 1997. McKay, B. D. and Rogoyski, E. ``Latin Squares of Order 10.'' Electronic J. Combinatorics 2, N3 1-4, 1995.http://www.combinatorics.org/Volume_2/volume2.html#N3. Nechvatal, J. R. ``Asymptotic Enumeration of Generalised Latin Rectangles.'' Util. Math. 20, 273-292, 1981. Ryser, H. J. ``Latin Rectangles.'' §3.3 in Combinatorial Mathematics. Buffalo, NY: Math. Assoc. Amer., pp. 35-37, 1963. Shao, J.-Y. and Wei, W.-D. ``A Formula for the Number of Latin Squares.'' Disc. Math. 110, 293-296, 1992. Sloane, N. J. A. SequencesA002860/M2051and A000315/M3690in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
||||||||||||
| 随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。