请输入您要查询的字词:

 

单词 Liouville Function
释义

Liouville Function

The function

(1)

where is the number of not necessarily distinct Prime Factors of , with . The first few values of are 1, , , 1, , 1, , , 1, 1, , , .... The Liouville function is connected with theRiemann Zeta Function by the equation
(2)

(Lehman 1960).


The Conjecture that the Summatory Function

(3)

satisfies for is called the Pólya Conjecture and has been proved to befalse. The first for which are for , 4, 6, 10, 16, 26, 40, 96, 586, 906150256, ... (Sloane's A028488),and is, in fact, the first counterexample to the Pólya Conjecture (Tanaka1980). However, it is unknown if changes sign infinitely often (Tanaka 1980). The first few values of are 1,0, , 0, , 0, , , , 0, , , , , , 0, , , , , ... (Sloane's A002819). also satisfies
(4)

where is the Floor Function (Lehman 1960). Lehman (1960) also gives the formulas

(5)
and


(6)

where , , and are variables ranging over the Positive integers, is the MöbiusFunction, is Mertens Function, and , , and are Positive real numbers with.

See also Pólya Conjecture, Prime Factors, Riemann Zeta Function


References

Fawaz, A. Y. ``The Explicit Formula for .'' Proc. London Math. Soc. 1, 86-103, 1951.

Lehman, R. S. ``On Liouville's Function.'' Math. Comput. 14, 311-320, 1960.

Sloane, N. J. A. SequencesA028488 andA002819/M0042in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

Tanaka, M. ``A Numerical Investigation on Cumulative Sum of the Liouville Function.'' Tokyo J. Math. 3, 187-189, 1980.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/4 1:48:36