请输入您要查询的字词:

 

单词 ENOMM0266
释义
257
I
identity An equation that states that two mathemati-
cal expressions are equal for all possible values of any
variables that occur in them is called an identity. For
example, the
DIFFERENCE OF TWO SQUARES
formula
x2y2= (xy)(x+ y) and the trigonometric equation
sin2θ+ cos2θ= 1 are identities. Sometimes the symbol
is used instead of = to indicate that the statement is an
identity. It is read as “identically equal to.”
A numerical statement, one involving no variables
at all, might still be called an identity if it illuminates
something interesting about the numbers involved. For
example, the following relationship could be called an
identity because of the unexpected appearance of the
number π:
See also
EQUATION
;
IDENTITY ELEMENT
.
identity element (identity, neutral element) An ele-
ment of a set that, combined with any other element of
the set, leaves that element unchanged is called an iden-
tity element. More precisely, given a
BINARY OPERATION
“*” on a set S, we say that ein Sis an identity element if:
a*e = a
e*a = a
for all elements aof the set.
For example, the number zero is an identity ele-
ment for the set of real numbers under the operation of
addition: we have that a+ 0 = a= 0 + afor all numbers
a. With respect to multiplication, 1 is an identity ele-
ment, since a×1 = a= 1 ×afor all numbers a. (The
number zero is sometimes called an “additive identity”
and the number 1 a “multiplicative identity.”)
In matrix theory the
IDENTITY MATRIX
is an identity
element under multiplication for the set of all square
matrices of a particular size. In
SET THEORY
, the
EMPTY
SET
is an identity under the operation of taking union.
Any
GROUP
is required to have an identity element.
It is impossible for a mathematical system to pos-
sess two different identity elements with respect to the
same binary operation. If, for instance, eand fare both
identity elements for a set S, then e*f equals e(since fis
an identity element), and it also equals f(since eis an
identity element). Thus eand fare the same.
In some mathematical theories it is desirable to dis-
tinguish between a “left identity,” that is an element eL
such that eL*a = afor all elements a, and a “right iden-
tity” eRthat satisfies a*eR= afor all a. Of course, if the
theory satisfies the
COMMUTATIVE PROPERTY
, then eLand
eRare equal and represent an identity for the system.
See also
INVERSE ELEMENT
.
identity matrix (unit matrix) A square
MATRIX
with
each main diagonal element equal to 1 and all other
entries equal to zero is called an identity matrix. Such a
matrix is usually denoted Ior Id, or even Idnif the
31
4
1
20
1
1985 4
arctan arctan arctan
+
+
=
π
随便看

 

数学辞典收录了1883条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/13 17:06:22