请输入您要查询的字词:

 

单词 HeavisideStepFunction
释义

Heaviside step function


The Heaviside step function is the functionMathworldPlanetmath H: defined as

H(x)={0whenx<0,1/2whenx=0,1whenx>0.

Here, there are many conventions for the value at x=0. Themotivation for setting H(0)=1/2 is that we can then writeH as a function of the signum function (seethis page (http://planetmath.org/SignumFunction)). In applications, such asthe Laplace transformDlmfMathworldPlanetmath, where the Heaviside function is used extensively,the value of H(0) is irrelevant.The Fourier transformDlmfMathworldPlanetmath of heaviside function is

0H(t)=12(δ(t)-iπt)

where δ denotes the Dirac delta centered at 0.The function is named after Oliver Heaviside (1850-1925)[1]. However, the function was already used byCauchy[2], who defined the function as

u(t)=12(1+t/t2)

and called it a coefficient limitateur [3].

References

  • 1 The MacTutor History of Mathematics archive,http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Heaviside.htmlOliver Heaviside.
  • 2 The MacTutor History of Mathematics archive,http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Cauchy.htmlAugustin Louis Cauchy.
  • 3 R.F. Hoskins, Generalised functions,Ellis Horwood Series: Mathematics and its applications,John Wiley & Sons, 1979.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 0:54:52