请输入您要查询的字词:

 

单词 HenselsLemmaForIntegers
释义

Hensel’s lemma for integers


Let f(x) be a polynomialMathworldPlanetmathPlanetmath with integer coefficients, p a prime numberMathworldPlanetmath, and n a positive integer.  Assume that an integer a (and naturally its whole residue classMathworldPlanetmath modulo pn) satisfies the congruenceMathworldPlanetmathPlanetmathPlanetmath

f(x) 0(modpn).(1)

The solution  x=a  of (1) may be refined in its residue class modulo pn to a solution  x=a+rpn  of the congruence

f(x) 0(modpn+1).(2)

This refinement is unique modulo pn+1 iff  f(a)0(modp).

Proof.  Now we have  f(a)=spn.  We have to find an r such that

f(a+rpn) 0(modpn+1).

The short Taylor theorem requires that

f(a+rpn)f(a)+rf(a)pn(modr2p2n)

where  2nn+1, whence this congruence can be simplified to

spn+rf(a)pn 0(modpn+1).

Thus the integer r must satisfy the linear congruence

s+rf(a) 0(modp).

When  f(a)0,  this congruence has a unique solution modulo p (see linear congruence); thus we have the refinement a=a+rpn  which is unique modulo pn+1.

When  f(a)0  and  s0(modp),  the congruence evidently is impossible.

In the case  f(a)s0(modp)  the congruence (2) is identically true in the residue class of a modulo pn.   □

References

  • 1 Peter Hackman: Elementary Number Theory. HHH Productions, Linköping (2009).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:47:22