请输入您要查询的字词:

 

单词 HeronsPrinciple
释义

Heron’s principle


Theorem.  In the Euclidean planeMathworldPlanetmath, let l be a lineand A and B two points not on l.  If X is a point ofl such that the sum AX+XB is the least possible,then the lines AX and BX form equal angles with theline l.

This Heron’s principle, concerning the reflectionMathworldPlanetmath oflight, is a special case of Fermat’s principle in optics.

Proof.  If A and B are on different sides of l, then X must be on the line AB, and the assertion is trivial since the vertical anglesMathworldPlanetmath are equal.  Thus, let the points A and B be on the same side of l.  Denote by P and Q the points of the line l where the normals of l set through A and B intersect l, respectively.  Let C be the intersection point of the lines AQ and BP.  Then, X is the point of l where the normal lineMathworldPlanetmath of l set through C intersects l.

Justification:  From two pairs of similarMathworldPlanetmathPlanetmath right trianglesMathworldPlanetmath we get the proportion equations

AP:CX=PQ:XQ,BQ:CX=PQ:PX,

which imply the equation

AP:PX=BQ:XQ.

From this we can infer that also

ΔAXPΔBXQ.

Thus the corresponding angles AXP and BXQ are equal.

We still state that the route AXB is the shortest.  If X1 is another point of the line l, then  AX1=AX1,  and thus we obtain

AX1B=AX1B=AX1+X1BAB=AXB=AXB.

References

  • 1 Tero Harju: Geometria. Lyhyt kurssi. Matematiikan laitos. Turun yliopisto (University of Turku), Turku (2007).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 13:57:23