请输入您要查询的字词:

 

单词 HouseholderTransformation
释义

Householder transformation


This entry describes the Householder transformation u=Hv, the most frequently used algorithm for performing QR decompositionMathworldPlanetmath. The key object here is the Householder matrix H, a symmetricPlanetmathPlanetmath and orthogonal matrixMathworldPlanetmath of the form

H=I-2xxT,

where I is the identity matrixMathworldPlanetmath and we have used any normalized vector x with ||x||22=xTx=1.

The Householder transformation zeroes the last m-1 elements of a column vectorMathworldPlanetmath below the first element:

[v1v2vm][c00]withc=±||v||2=±(i=1mvi2)1/2

One can verify that

x=f[v1-cv2vm]withf=12c(c-v1)

fulfils xTx=1 and that with H=I-2xxT one obtains the vector [c00]T.

To perform the decomposition of the m×n matrix A=QR (with mn) we construct an m×m matrix H(1) to change the m-1 elements of the first column to zero. Similarly, an m-1×m-1 matrix G(2) will change the m-2 elements of the second column to zero. With G(2) we produce the m×m matrix

H(2)=[1000G(2)0].

After n such orthogonal transformationsMathworldPlanetmath (n-1 times in the case that m=n), we let

R=H(n)H(2)H(1)A.

R is upper triangular and the orthogonal matrix Q becomes

Q=H(1)H(2)H(n).

In practice the H(i) are never explicitly computed.

References

  • Originally from The Data Analysis Briefbook(http://rkb.home.cern.ch/rkb/titleA.htmlhttp://rkb.home.cern.ch/rkb/titleA.html)

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:34:04