请输入您要查询的字词:

 

单词 IllustrationOfIntegrationTechniques
释义

illustration of integration techniques


The following integralDlmfPlanetmath is an example that illustrates many integration techniques.

Problem. Determine the antiderivative of tanx.

. We start with substitution (http://planetmath.org/IntegrationBySubstitution):

u=tanx
u2=tanx
2udu=sec2xdx

Using the Pythagorean identity tan2x+1=sec2x, we obtain:

2udu=(tan2x+1)dx
2udu=(u4+1)dx
2uu4+1du=dx

Thus,

tanx𝑑x=u2uu4+1𝑑u
=2u2(u2-u2+1)(u2+u2+1)𝑑u.

For this last integral, we use the method of partial fractionsPlanetmathPlanetmath (http://planetmath.org/ALectureOnThePartialFractionDecompositionMethod):

2u2(u2-u2+1)(u2+u2+1)=A+Buu2-u2+1+C+Duu2+u2+1
2u2=(A+Bu)(u2+u2+1)+(C+Du)(u2-u2+1)
=(B+D)u3+(A+C+(B-D)2)u2+(B+D+(A-C)2)u+A+C

From this, we obtain the following system of equations:

{B+D=0A+C+(B-D)2=2(A-C)2+B+D=0A+C=0

This can be into two smaller systems of equations:

{A+C=0A2-C2=0
{B+D=0B2-D2=2

It is clear that the first system yields A=C=0, and it can easily be verified that B=12 and D=-12. Therefore,

tanx𝑑x=12uu2-u2+1𝑑u-12uu2+u2+1𝑑u
=12uu2-u2+12+12𝑑u-12uu2+u2+12+12𝑑u
=12u(u-12)2+12𝑑u-12u(u+12)2+12𝑑u.

Now we make the following substitutions:

v=u-12w=u+12dv=dudw=du

Note that we have v+12=u=w-12. Therefore,

tanx𝑑x=12v+12v2+12𝑑v-12w-12w2+12𝑑w
=12vv2+12𝑑v-12dvv2+12-12ww2+12𝑑w+12dww2+12.

For the first and third integrals in the last expression, note that the numerator is a of the derivative of the denominator. For these, we use the formula

kf(x)f(x)𝑑x=kln|f(x)|.

For the second and fourth integrals in the last expression, we use the formula

dxx2+a2=1aarctan(xa)

with a=12. Hence,

tanx𝑑x=122ln(v2+12)+12arctan(v2)-122ln(w2+12)+12arctan(w2)+K
=122ln(v2+12w2+12)+12(arctan(v2)+arctan(w2))+K
=122ln((u-12)2+12(u+12)2+12)+12(arctan[(u-12)2]+arctan[(u+12)2])+K
=122ln(u2-u2+1u2+u2+1)+12[arctan(u2-1)+arctan(u2+1)]+K
=122ln(tanx-2tanx+1tanx+2tanx+1)+12[arctan(2tanx-1)+arctan(2tanx+1)]+K.

(We use K for the constant of integration to avoid confusion with C from the system of equations.)

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:45:04