请输入您要查询的字词:

 

单词 ImageEquation
释义

image equation


In solving an initial value problemMathworldPlanetmathPlanetmath leading to an ordinary differentialequationMathworldPlanetmath, the Laplace transformMathworldPlanetmath offers often a way to simplify the equation:both sides are Laplace transformed.  The transformed equation, the so-calledimage equation, is in many cases simplier than the original differentialequation, since it does not contain the derivatives of the unknown functiony(t).  From the image equation one may solve the Laplace transform Y(s) ofy(t) and then inverse transform Y(s) getting y(t).

Let’s consider e.g. the ordinary n’th order lineardifferential equation

a0dnydt+a1dn-1ydxn-1++an-1dydt+any(t)=f(t)(1)

subject to the initial conditions

y(0)=y0,y(0)=y0,,yn-1(0)=y0(n-1).(2)

Due to the linearity of the Laplace transform the image equationof (1) is

a0{dnydxn}+a1{dn-1ydxn-1}++an{y(t)}={f(t)}.(3)

Denote  {y(t)}=:Y(s)  and {f(t)}=:F(s).  We put into (3) the expressionsof the Laplace transforms of the derivatives on the left hand side (see “Laplace transforms of derivatives (http://planetmath.org/LaplaceTransformsOfDerivatives)”)getting

a0[snY(s)-(sn-1y0+sn-2y0++y0(n-1))]
+a1[sn-1Y(s)-(sn-2y0+sn-3y0++y0(n-2))]
+      
+an-1[sY(s)-(y0)]
=F(s).

This equation is simplified to

(a0sn+a1sn-1++an-1s+an)Y(s)=
a0[y0sn-1+y0sn-2++y0(n-1)]+
+a1[y0sn-2+y0sn-3++y0(n-2)]+
+      +
+an-2[y0s+y0]+an-1[y0]+F(s).

For brevity, denote in the last equation the polynomialmultiplier of Y(s) by φ(s) and the sum preceding F(s)by ψ(s).  Then the equation can be written as

φ(s)Y(s)=ψ(s)+F(s),

i.e.

Y(s)=ψ(s)φ(s)+F(s)φ(s).(4)

The function Y(s) defined by (4) is the Laplace transform ofthe solution y(t) of the differential equation (1) whichsatisfies the initial conditions (2).  If we now find a functiony*(t) the Laplace transform of which is the function Y(s)defined by (4), then y*(t) will do for y(t) due to theuniqueness property of Laplace transform expressed in the entry“Mellin’s inverse formula (http://planetmath.org/MellinsInverseFormula)”.
If we seek the solution of (1) satisfying the zero initialconditions

x0=x0=x0′′==x0(n-1)=0,

then  ψ(s)0  and

Y(s)=F(s)φ(s),

i.e.

Y(s)=F(s)a0sn+a1sn-1++an.

Example.  The 4’th order differential equation

y′′′′(t)+y(t)= 0(5)

should be solved with the initial conditions

y(0)=y′′′(0)=1,y(0)=y′′(0)=0.

The image equation of (5) is

s4Y(s)-s3y(0)-s2y(0)-sy′′(0)-y′′′(0)+Y(s)= 0,

i.e.

(s4+1)Y(s)=s3+1.

Thus one needs to determine the inverse Laplace transform of

Y(s)=144s3s4+1+1s4+1.(6)

The zeroes of the numerator s4+1 are the eighth roots of unityeiπ4, ei3π4, ei5π4,ei7π4, in other words the complex numbersPlanetmathPlanetmath±1±i2.  By the special case (3) ofthe Heaviside formula, the first addend of (6)corresponds the original function

14±e±1±i2t=et2+e-t22eit2+e-it22=cosht2cost2.

Utilizing also the generalHeaviside formula (http://planetmath.org/HeavisideFormula) (1), one canget from (6) the result

y(t):=cosht2cost2+12(cosht2sint2-sinht2cost2).

References

  • 1 N. Piskunov: Diferentsiaal- jaintegraalarvutus kõrgematele tehnilisteleõppeasutustele. Teine köide. Viies trükk. Kirjastus Valgus, Tallinn (1966).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 18:59:08