请输入您要查询的字词:

 

单词 IndefiniteAndDefiniteSums
释义

indefinite and definite sums


An indefinite sum, like an indefinite integral, is an operator which acts on a functionMathworldPlanetmath. In other words, it transforms a given function to another via a certain law. This article presents the so called Caves summation formula. The advantages of the formula in comparison with other summation methods are that it gives the indefinite sum for any analytical function, and that it also completely reduces summation to integration. One can do with the Caves summation formula everything that one can do with an integral. For example, one can take a sum along a path either in the complex planeMathworldPlanetmath or along a contour with a singular point inside the contour, and so on.

kx-1φ(k+z)=0xν=0Bν-Aνν!φ(ν)(ξ+z)dξ-0xAN(z-ξ)N!φ(N-1)(z+ξ)𝑑ξ--0xm=0φ(N+m)(z+ξ)AN+m(x-ξ)kN+m+1kN+1+m    dξ+H(x,z)=F(x,z,N)-f(x,z,N)-fε(x,z,N)+H(x,z,N)
F(x,z,N)=FN(x,z,N)+FNε(x,z,N). I choose that |Bν-Aν|(r(ν))ν,where Bν are Bernoulli numbers,|FNε(x,z,N)|=|0xν=NBν-Aνν!φ(ν)(z+z1)||x|(r(N))NN!supz+z1G|φ(n)(z+z1)||fε(x,z,N)|=|0xm=0φ(N+m)(z+ξ)AN+m(x+α-ξ)kN+m+1kN+1+m      ||x|(r(N))NN!supζG|φ(N)(ζ)|

where G is the region of summation. In case of summation in complex plain r(ν) must be a positive constant, r(ν)=rz=max(r,elnr+1er) where r is a positive value less or equal to the minimal radius of convergenceMathworldPlanetmath of Tailor series of the function φ(z) on the intersection of the area of summation G with the x-axis. In case of summation exclusively on a segment of the x-axis it is more convenient to choose r(ν)=1lnν or r(ν)=1ln(lnν), especially in a case when there is a singular point on the path of summation.The same for a path parallel to the x-axis when φ(z) is regarded as a function of real valued argument. The more close rz is to zero the more close the possible area of summation is to the hole area where φ(z) is analytical.

Aν=0,ν=0,1,2,,N-1,(N2),A2ν=0,ν=0,1,2,

Periodical function with the period 1

H(α,z)==x=00α(AN′′(ξ+x)N!φ(N-1)(z-x)+m=0φ(N+m)(z-x)AN+m(ξ+x)kN+m+1kN+1+m   )dξdx==hN(α,z)+hεN(α,z),limN|hεN(α,z)|=limN|x=00α(m=0φ(N+m)(z-x)AN+m(ξ+x)kN+m+1kN+1+m   )dξdx|limN|Dα|rN+1(N+1)!supζG|φ(N+1)(ζ)|=0,

where D is the diameter of the area of summation and z is a parameterMathworldPlanetmath.

AN(α)={2(-1)N2+1N!k=1kNcos2πkα(2πk)N-1,when N even2(-1)N2+1N!k=1kNsin2πkα(2πk)N-1,when N odd,

AN(0)=AN, and

AN+m(x)kN+m+1kN+1+m={2(-1)N+m2+1k=kN+m+1kN+1+mcos2πkx(2πk)N+m,when N+m even2(-1)N+m2+1k=kN+m+1kN+1+msin2πkx(2πk)N+m,when N+m odd

The floor of x (x is real) x is the largest integer less then x.

From the condition |Bν(x)-Aν(x)|(r(ν))ν=rν,(0x1)(Bν(x) are Bernoulli polynomialsDlmfDlmfMathworld) I find out that

kν=ν2πre(1-δν,1),ν=1,2,whereδν,1is the Kronecker delta,δν,1=1whenν=1and 0otherwise.

The definite sum is defined as:

k=ax-1φ(k+z)=kx-1φ(k+z)-ka-1φ(k+z)

In the case of integer summation boundaries the summation formula can be simplified.

k=n1n2-1=n1n2(ν=0Bν-Aνν!φ(ν-1)(ξ+z)-AN(z-ξ)N!φ(N-1)(ξ+z))𝑑ξ+εN,

where

|εN||n1n2(m=0φ(N+m)(z+ξ)AN+m(-ξ)kN+m+1kN+1+m    d)ξ||n2-n1|(r(N))NN!supn1ζn2|φ(N)(ζ)|.r(ν)=r,r(ν)=1lnν or r(ν)=1ln(lnν).

Notes:

1. Complete details are provided through the link to the following http://www.oddmaths.info/indefinitesumweb site: http://www.oddmaths.info/indefinitesum.

2. The complete pdf of the entire article can be downloaded here from the http://planetmath.org/files/papers/554/Summation.pdfcomplete article on “Summation” uploaded to the Papers section.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:04:11