请输入您要查询的字词:

 

单词 InequalitiesForRealNumbers
释义

inequalities for real numbers


Suppose a is a real number.

  1. 1.

    If a<0 then a is a negative number.

  2. 2.

    If a>0 then a is a positive number.

  3. 3.

    If a0 then a is a non-positive number.

  4. 4.

    If a0 then a is a non-negative number.

The first two inequalitiesMathworldPlanetmath are also called strict inequalities.
The second two inequalities are also called loose inequalities.

Properties

Suppose a and b are real numbers.

  1. 1.

    If a>b, then -a<-b. If a<b, then -a>-b.

  2. 2.

    If ab, then -a-b. If ab, then -a-b.

Lemma 1.

0<a  iff  -a<0.

Proof.

If 0<a, then adding -a on both sides of the inequality gives -a=-a+0<-a+a=0.  This process can also be reversed.∎

Lemma 2.

For any aR, either a=0 or 0<a2.

Proof.

Suppose  a0, then by trichotomy, we have either  0<a  or  a<0, but not both.  If  0<a,  then  0=0a<aa=a2.  On the other hand, if  -(-a)=a<0, then  0<-a  by the previous lemma.  Then repeating the previous ,  0=0(-a)<(-a)(-a)=a2.∎

Three direct consequences follow:

Corollary 1.

0<1

Corollary 2.

For any aR, 0<1+a2.

Corollary 3.

There is no real solution for x in the equation 1+x2=0.

Inequality for a converging sequence

Suppose a0,a1, is a sequence of real numbers converging to a realnumber a.

  1. 1.

    If ai<b or aibfor some real number b for each i, then ab.

  2. 2.

    If ai>b or aibfor some real number b for each i, then ab.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:06:43