请输入您要查询的字词:

 

单词 InfiniteGaloisTheory
释义

infinite Galois theory


Let L/F be a Galois extensionMathworldPlanetmath, not necessarily finite dimensional.

1 Topology on the Galois group

Recall that the Galois groupMathworldPlanetmath G:=Gal(L/F) of L/F is thegroup of all field automorphisms σ:LL that restrict tothe identity map on F, under the group operationMathworldPlanetmath of compositionMathworldPlanetmathPlanetmath. Inthe case where the extensionPlanetmathPlanetmathPlanetmathPlanetmath L/F is infinite dimensional, the groupG comes equipped with a natural topology, which plays a key role inthe statement of the Galois correspondencePlanetmathPlanetmath.

We define a subset U of G to be open if, for each σU,there exists an intermediate field KL such that

  • The degree [K:F] is finite,

  • If σ is another element of G, and the restrictionsPlanetmathPlanetmathPlanetmathσ|K and σ|K are equal, then σU.

The resulting collectionMathworldPlanetmath of open sets forms a topologyMathworldPlanetmath on G, calledthe Krull topology, and G is a topological groupMathworldPlanetmath under theKrull topology. Another way to define the topology is to state thatthe subgroupsMathworldPlanetmathPlanetmath Gal(L/K) for finite extensionsMathworldPlanetmath K/F form a neighborhoodMathworldPlanetmathPlanetmathbasis for Gal(L/F) at the identityPlanetmathPlanetmathPlanetmathPlanetmath.

2 Inverse limit structure

In this sectionPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath we exhibit the group G as a projective limitPlanetmathPlanetmath of aninverse systemMathworldPlanetmath of finite groupsMathworldPlanetmath. This construction shows that theGalois group G is actually a profinite group.

Let 𝒜 denote the set of finite normal extensionsMathworldPlanetmath K of F whichare contained in L. The set 𝒜 is a partially ordered setMathworldPlanetmath underthe inclusion relation. Form the inverse limit

Γ:=limGal(K/F)K𝒜Gal(K/F)

consisting, as usual, of the set of all (σK)KGal(K/F) such that σK|K=σK for all K,K𝒜with KK. We make Γ into a topological space byputting the discrete topology on each finite setMathworldPlanetmath Gal(K/F) andgiving Γ the subspace topology induced by the product topologyon KGal(K/F). The group Γ is a closed subset of thecompact group KGal(K/F), and is therefore compactPlanetmathPlanetmath.

Let

ϕ:GK𝒜Gal(K/F)

be the group homomorphismMathworldPlanetmath which sends an element σG to theelement (σK) of KGal(K/F) whose K–th coordinateis the automorphismPlanetmathPlanetmathPlanetmathPlanetmath σ|KGal(K/F). Then the functionϕ has image equal to Γ and in fact is a homeomorphismPlanetmathPlanetmathbetween G and Γ. Since Γ is profinite, it follows thatG is profinite as well.

3 The Galois correspondence

Theorem 1 (Galois correspondence for infinite extensions).

Let G, L, F be as before. For every closed subgroup H of G,let LH denote the fixed field of H. The correspondence

KGal(L/K),

defined for all intermediate field extensions FKL,is an inclusion reversing bijection between the set of allintermediate extensions K and the set of all closed subgroups ofG. Its inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmath is the correspondence

HLH,

defined for all closed subgroups H of G. The extension K/F isnormal if and only if Gal(L/K) is a normal subgroupMathworldPlanetmath of G, and inthis case the restriction map

GGal(K/F)

has kernel Gal(L/K).

Theorem 2 (Galois correspondence for finite subextensions).

Let G, L, F be as before.

  • Every open subgroup HG is closed and has finite indexin G.

  • If HG is an open subgroup, then the field extensionLH/F is finite.

  • For every intermediate field K with [K:F] finite, the Galoisgroup Gal(L/K) is an open subgroup of G.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:36:54