请输入您要查询的字词:

 

单词 InverseLaplaceTransformOfDerivatives
释义

inverse Laplace transform of derivatives


It may be shown that the Laplace transformDlmfMathworldPlanetmathF(s)=0e-stf(t)𝑑t  is always differentiableMathworldPlanetmathPlanetmath and that its derivative can be formed by differentiating under the integral sign (http://planetmath.org/DifferentiationUnderIntegralSign), i.e. one has

F(s)=0(e-stf(t))s𝑑t=0e-st(-t)f(t)𝑑t.

This gives the rule

-1{F(s)}=-tf(t).(1)

Applying (1) to F(s) instead of F(s) gives

-1{F′′(s)}=t2f(t).

Continuing this way we can obtain the general rule

-1{F(n)(s)}=(-1)ntnf(t),(2)

or equivalently

{tnf(t)}=(-1)ndn{f(t)}dsn,(3)

for any  n=1, 2, 3, (and of course for  n=0).

Example.  Let’s find the Laplace transform of the first kind and 0th Bessel functionDlmfMathworldPlanetmathPlanetmath

J0(t):=m=0(-1)m(m!)2(t2)2m,

which is the solution y(t) of the Bessel’s equation

ty′′(t)+y(t)+ty(t)=0(4)

satisfying the initial conditionMathworldPlanetmathy(0)=1.  The equation implies that  y(0)=0.

By (3), the Laplace transform of the differential equationMathworldPlanetmath (4) is

-d{y′′(t)}ds+{y(t)}-d{y(t)}ds=0.

Using here twice the rule 5 in the parent (http://planetmath.org/LaplaceTransform) entry gives us

-d(s2Y(s)-s)ds+sY(s)-1-dY(s)ds=0,

which is simplified to

(s2+1)dYds+sY=0,

i.e. to

dYY=-sdss2+1.

Integrating this gives

lnY=-12ln(s2+1)+lnC=lnCs2+1,

i.e.

Y(s)=Cs2+1.

The initial condition enables to justify that the integration constant C must be 1.  Thus we have the result

{J0(t)}=1s2+1.

References

  • 1 K. Väisälä: Laplace-muunnos.  Handout Nr. 163. Teknillisen korkeakoulun ylioppilaskunta, Otaniemi, Finland (1968).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:55:46