请输入您要查询的字词:

 

单词 Adjugate
释义

adjugate


The adjugatePlanetmathPlanetmath, adj(A), of an n×nmatrix A, is the n×n matrix

adj(A)ij=(-1)i+jMji(A)(1)

where Mji(A) is the indicated minor of A (the determinantMathworldPlanetmathobtained by deleting row j and column i from A). The adjugateis also known as the classical adjoint, to distinguish it fromthe usual usage of “adjointPlanetmathPlanetmath” (http://planetmath.org/AdjointEndomorphism) whichdenotes the conjugate transposeMathworldPlanetmath operationMathworldPlanetmath.

An equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath characterization of the adjugate is the following:

adj(A)A=det(A)I.(2)

The equivalence of (1) and (2) follows easilyfrom the multi-linearityproperties (http://planetmath.org/DeterminantAsAMultilinearMapping) of the determinant.Thus, the adjugate operation is closely related to the matrix inverse.Indeed, if A is invertiblePlanetmathPlanetmath, the adjugate can be defined as

adj(A)=det(A)A-1

Yet another definition of the adjugate is the following:

adj(A)=pn-1(A)I-pn-2(A)A+pn-3(A)A2-(3)
+(-1)n-2p1(A)An-2+(-1)n-1An-1,

where p1(A)=tr(A),p2(A),,pn(A)=det(A)are the elementary invariant polynomials ofA. The latter arise ascoefficients in thecharacteristic polynomialMathworldPlanetmathPlanetmath p(t) of A, namely

p(t)=det(tI-A)=tn-p1(A)tn-1++(-1)npn(A).

The equivalence of (2) and (3) follows fromthe Cayley-Hamilton theoremMathworldPlanetmath. The latter states that p(A)=0, whichin turn implies that

A(An-1-p1(A)An-2++(-1)n-1pn-1(A))=(-1)n-1det(A)I

The adjugate operation enjoys a number of notableproperties:

adj(AB)=adj(B)adj(A),(4)
adj(At)=adj(A)t,(5)
det(adj(A))=det(A)n-1.(6)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:58:29