请输入您要查询的字词:

 

单词 InvertibilityOfRegularlyGeneratedIdeal
释义

invertibility of regularly generated ideal


Lemma.   Let R be a commutative ring containing regular elementsPlanetmathPlanetmath.  If 𝔞, 𝔟 and 𝔠 are three ideals of R such that  𝔟+𝔠,  𝔠+𝔞  and  𝔞+𝔟  are invertiblePlanetmathPlanetmath (http://planetmath.org/FractionalIdealOfCommutativeRing), then also their sum ideal  𝔞+𝔟+𝔠  is .

Proof.  We may assume that R has a unity, therefore the productMathworldPlanetmathPlanetmath of an ideal and its inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/FractionalIdealOfCommutativeRing) is always R.  Now, the ideals  𝔟+𝔠,  𝔠+𝔞  and  𝔞+𝔟  have the 𝔣1, 𝔣2 and 𝔣3, respectively, so that

(𝔟+𝔠)𝔣1=(𝔠+𝔞)𝔣2=(𝔞+𝔟)𝔣3=R.

Because  𝔞𝔣2R  and  𝔠𝔣1R,  we obtain

(𝔞+𝔟+𝔠)(𝔞𝔣2𝔣3+𝔠𝔣1𝔣2)=(𝔞+𝔟)𝔞𝔣2𝔣3+𝔠(𝔞𝔣2)𝔣3+𝔞(𝔠𝔣1)𝔣2+(𝔟+𝔠)𝔠𝔣1𝔣2
=𝔞𝔣2+𝔠𝔣2=(𝔠+𝔞)𝔣2
=R.

Theorem.  Let R be a commutative ring containing regularelements.  If every ideal of R generated by two regular elements is , then in R also every ideal generated by a finite setMathworldPlanetmath of regular elements is .

Proof.  We use inductionMathworldPlanetmath on n, the number of the regular elements of the generating set.  We thus assume that every ideal of R generated by n regular elements  (n2)  is .  Let  {r1,r2,,rn+1} be any set of regular elements of R.  Denote

𝔞=:(r1),𝔟=:(r2,,rn),𝔠=:(rn+1).

The sums  𝔟+𝔠,  𝔠+𝔞  and  𝔞+𝔟  are, by the assumptionsPlanetmathPlanetmath, .  Then the ideal

(r1,r2,,rn,rn+1)=𝔞+𝔟+𝔠

is, by the lemma, , and the inductionproof is completePlanetmathPlanetmathPlanetmathPlanetmath.

References

  • 1 R. Gilmer: Multiplicative ideal theory.  Queens University Press. Kingston, Ontario (1968).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:12:45