请输入您要查询的字词:

 

单词 JacobianAndChainRule
释义

Jacobian and chain rule


Let u, v be differentiable functions of x, y and x, y be differentiable functions of s, t.  Then the connection

(u,v)(s,t)=(u,v)(x,y)(x,y)(s,t)(1)

between the Jacobian determinants is in .

Proof.  Starting from the right hand side of (1), where one can multiply the determinantsMathworldPlanetmath (http://planetmath.org/Determinant2) similarly as the corresponding matrices (http://planetmath.org/MatrixMultiplication), we have

|uxuyvxvy||xsxtysyt|=|uxxs+uyysuxxt+uyytvxxs+vyysvxxt+vyyt|=|usutvsvt|.

Here, the last stage has been written according to the general chain ruleMathworldPlanetmath (http://planetmath.org/ChainRuleSeveralVariables).  But thus we have arrived at the left hand side of the equation (1), which hereby has been proved.

Remark.  The rule (1) is only a visualisation of the more general one concerning the case of functions of n variables.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 15:29:22