请输入您要查询的字词:

 

单词 JacobisTheorem
释义

Jacobi’s theorem


Jacobi’s Theorem Any skew-symmetric matrix of odd order has determinantMathworldPlanetmath equal to 0.

Proof. Suppose A is an n×n square matrixMathworldPlanetmath.For the determinant, we then have detA=detAT, anddet(-A)=(-1)ndetA. Thus, since n is odd, and AT=-A, we havedetA=-detA, and the theorem follows.

0.0.1 Remarks

  1. 1.

    According to [1], this theorem was given byCarl Gustav Jacob Jacobi (1804-1851) [2] in 1827.

  2. 2.

    The 2×2 matrix (01-10) shows that Jacobi’s theorem does not hold for 2×2matrices. The determinant of the 2n×2n block matrixMathworldPlanetmath withthese 2×2 matrices on the diagonal equals (-1)n. Thus Jacobi’s theoremdoes not hold for matrices of even order.

  3. 3.

    For n=3, any antisymmetric matrix A can be writtenas

    A=(0-v3v2v30-v1-v2v10)

    for some real v1,v2,v3, which can be written as avector v=(v1,v2,v3). Then A is the matrix representing themapping uv×u, that is, the cross productMathworldPlanetmath withrespect to v. Since Av=v×v=0, we have detA=0.

References

  • 1 H. Eves,Elementary MatrixMathworldPlanetmath Theory,Dover publications, 1980.
  • 2 The MacTutor History of Mathematics archive,http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Jacobi.htmlCarl Gustav Jacob Jacobi
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:31:07