请输入您要查询的字词:

 

单词 JacobsonsTheoremOnCompositionAlgebras
释义

Jacobson’s theorem on composition algebras


Recall that composition algebraMathworldPlanetmath C over a field k is specified with a quadratic formMathworldPlanetmath q:Ck.Furthermore, two quadratic forms q:Ck and r:Dk are isometric if there exists aninvertible linear mapMathworldPlanetmath f:CD such that r(f(x))=q(x) for all xC.

Theorem 1 (Jacobson).

[1, Theorem 3.23]Two unital Cayley-Dickson algebras C and D over a field k of characteristic not 2are isomorphicPlanetmathPlanetmathPlanetmath if, and only if, their quadratic forms are isometric.

A Cayley-Dickson algebra is split if the algebraPlanetmathPlanetmathPlanetmath has non-trivial zero-divisors.

Corollary 2.

[1, Corollary 3.24]Upto isomorphismMathworldPlanetmathPlanetmath there is only one split Cayley-Dickson algebra and the quadratic formhas Witt index 4.

Over the real numbers instead of Witt index, we say the signaturePlanetmathPlanetmath of the quadratic form is (4,4).

This result is often used together with a theorem of Hurwitz which limits the dimensionsPlanetmathPlanetmathPlanetmathof composition algebras to dimensions 1,2, 4 or 8. Thus to classify the composition algebrasover a given field k of characteristic not 2, it suffices to classify the non-degeneratequadratic forms q:knk with n=1,2,4 or 8.

References

  • 1 Richard D. Schafer, An introduction to nonassociative algebras, Pure andApplied Mathematics, Vol. 22, Academic Press, New York, 1966.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:24:06