请输入您要查询的字词:

 

单词 KolmogorovsMartingaleInequality
释义

Kolmogorov’s martingale inequality


Theorem (Kolmogorov’s martingale inequality).

Let X(t), for 0tT, be a submartingalewith continuousMathworldPlanetmathPlanetmath sample paths.Then for any constant α>0,

(max0tTX(t)α)𝔼[X(T)+]α.

(The notation X(T)+ means max(X(T),0), the positive part of X(T).)

Notice the analogyMathworldPlanetmath with Markov’s inequalityMathworldPlanetmath.Of course, the conclusionMathworldPlanetmath is much stronger than Markov’s inequality,as the probabilistic bound applies to an uncountable numberof random variablesMathworldPlanetmath. The continuity and submartingale hypothesesare used to establish the stronger bound.

Proof.

Let {ti}i=1n be a partitionPlanetmathPlanetmath of the interval [0,T].Let

B={max1inX(ti)α}

and split B into disjoint parts Bi,defined by

Bi={X(tj)<α for all j<i but X(ti)α}.

Also let {t} be the filtrationPlanetmathPlanetmath under which X(t)is a submartingale.

Then

(B)=i=1n𝔼[1(Bi)]
i=1n𝔼[X(ti)α 1(Bi)]definition of Bi
1αi=1n𝔼[𝔼[X(T)ti] 1(Bi)]X(t) is submartingale
=1αi=1n𝔼[𝔼[X(T) 1(Bi)ti]]Bi is ti-measurable
=1αi=1n𝔼[X(T) 1(Bi)]iterated expectation
=1α𝔼[X(T) 1(B)]
1α𝔼[X(T)+ 1(B)]
1α𝔼[X(T)+]monotonicity.

Since the sample paths are continuous by hypothesisMathworldPlanetmathPlanetmath,the event

A={max0tTX(t)α}

can be expressed as an countably infiniteMathworldPlanetmath intersectionMathworldPlanetmathof events of the form B with finer and finer partitions {ti}of the time interval [0,T].By taking limits, it follows(A)has the same bound as the probabilities (B).∎

Corollary.

Let X(t), for 0tT, be a square-integrable martingalepossessing continuous sample paths, whoseunconditional mean is m=E[X(0)].For any constant α>0,

(max0tT|X(t)-m|α)Var[X(T)]α2.
Proof.

Apply Kolmogorov’s martingale inequality to (X(t)-m)2,which is a submartingale by Jensen’s inequality.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 0:17:24