请输入您要查询的字词:

 

单词 AFinitelyGeneratedGroupHasOnlyFinitelyManySubgroupsOfAGivenIndex
释义

A finitely generated group has only finitely many subgroups of a given index


Let G be a finitely generated group and let n be a positiveinteger. Let H be a subgroupMathworldPlanetmathPlanetmath of G of index n and consider theaction of G on the coset space (G:H) by right multiplication.Label the cosets 1,,n, with the coset H labelled by 1.This gives a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath ϕ:GSn. Now, xH if andonly if Hx=H, that is, G fixes the coset H. Therefore, H=StabG(1)={gG1(gϕ)=1}, and this is completelydetermined by ϕ. Now let X be a finite generating setPlanetmathPlanetmath for G.Then ϕ is determined by the images xϕ of the generatorsPlanetmathPlanetmathPlanetmathPlanetmath xX. There are |Sn|=n! choices for the image of each xX, so there are at most n!|X| homomorphisms GSn. Hence,there are only finitely many possibilities for H.

References

  • 1 M. Hall, Jr., A topologyMathworldPlanetmath for free groupsMathworldPlanetmath and related groups, Ann. ofMath. 52 (1950), no. 1, 127–139.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:01:19