请输入您要查询的字词:

 

单词 KroneckersLemma
释义

Kronecker’s lemma


Kronecker’s lemma gives a condition for convergence of partial sums of real numbers, and for example can be used in the proof of Kolmogorov’s strong law of large numbersMathworldPlanetmath.

Lemma (Kronecker).

Let x1,x2, and 0<b1<b2< be sequences of real numbers such that bn increases to infinityMathworldPlanetmath as n. Suppose that the sum n=1xn/bn convergesPlanetmathPlanetmath to a finite limit. Then, bn-1k=1nxk0 as n.

Proof.

Set un=k=1nxk/bk, so that the limit u=limnun exists.Also set an=k=1n-1(bk+1-bk)uk so that

an+1-anbn+1-bn=unu

as n. Then, the Stolz-Cesaro theorem says that an/bn also converges to u, so

bn-1k=1nxk=bn-1k=1nbk(uk-uk-1)=un-bn-1an0.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:17:03